Light and Astronomy

The Message of Starlight

Location & Motion Luminosity & Temperature Composition of the Light Source Composition of any Intervening Medium Rotation & Surface Motions Electric & Magnetic Fields

Basic "Eyeball" Measurements of Light

Direction: "From where?" Brightness: "How much?" "Is it constant?" Color: "What kind?"and also Polarization

The Nature of Light

The Basic Behavior of Light

Light Travels in Straight Lines (The Inverse-Square Law)

Light Carries Energy and Momentum (Light heats or cools and exerts forces)

Light Travels at a Finite Speed (c = 300,000 km/s)

Some Forms of Light are Invisible to the Eye ("Electromagnetic Radiation")

Digression: Aristotle (again) and the Classical View of light light = $\phi v \sigma$ photons = $\phi \omega \tau o v \iota$

The Composition of Light (Newton and Others)

Light exhibits wavelike properties Each "color" corresponds to a measurable wavelength, λ ,

and frequency, v. (They are related by $\lambda v = c$.)

The Electromagnetic Spectrum

For <u>any</u> kind of a wave $\lambda v = c$ where c is the wave's speed.

A Surprising Property of Light

The Measured Speed of Light (in a vacuum) is independent of the relative motions of the source and the observer. (c = 300,000 km/s, always)

Einstein's Special Theory of Relativity (1905) is a consequence:

Predicted (and Observed) Phenomena:

Time Dilation, Relativistic Mass Variation, The Lorentz-Fitzgerald Contraction, and Mass-Energy equivalence.

$E = mc^2$

(Probably the most famous equation in the world.)with lots of consequences:

Another Surprising Property of Light

Light Exhibits the Properties of <u>both</u> Waves and Particles ("Photons" and "Electromagnetic Waves")

Wavelike Phenomena: Diffraction, Interference, Doppler Effect Brightness or Intensity = Wave Amplitude, Color = Frequency v or Wavelength λ (Recollect: $\lambda v = c$) Polarization = Oscillation Direction

Particle-like Phenomena: Vacuum propagation, discreteness Brightness or Intensity = Photon Numbers, Color = Photon Energy (E = hv) Polarization = Photon Spin ...leading to the realization that "obvious" particles (like rocks) can also display wavelike properties: Welcome to the Weird World of Quantum Mechanics!

Useful Phenomenon: The Inverse-Square Law for Light*

The apparent brightness (F) is proportional to the luminosity (L) of the source and inversely proportional to the square of the distance from the source (d)

*Johannes Kepler, *The Optical Part of Astronomy* (1604)

Useful Phenomenon: The Doppler Effect

A wave originating in a receding source will appear to be of longer wavelength or lower frequency. (*i.e.*, redder)

A wave originating in an approaching source will appear to be of shorter wavelength or higher frequency.(i.e., bluer) Doppler Effect

(a) stationary source (b) moving source

Note: The source is moving to the right in the second figure.

The Doppler Formula

The fractional shift in wavelength is equal to the <u>radial</u> <u>velocity</u> divided by the wave velocity

 $\Delta \lambda / \lambda_{\rm o} = (\lambda - \lambda_{\rm o}) / \lambda_{\rm o} = + V_{\rm radial} / C$

where λ_0 is the <u>emitted</u> wavelength, λ the <u>observed</u> wavelength

A <u>radial velocity</u> is the rate at which an object's <u>distance</u> changes. It's <u>positive</u> if the source is receding and <u>negative</u> if it's approaching

The Doppler Formula for <u>frequency</u> looks <u>almost</u> the same: $\Delta v / v_{o} = (v - v_{o}) / v_{o} = -V_{radial} / C$

.....but note the minus sign.

Since $\lambda v = c$, an <u>up</u>ward shift in frequency is the same as a <u>down</u>ward shift in wavelength, and *vice versa*.