The U.S. Contributions to SONG

Dr. Jason Jackiewicz
Assistant Professor
Department of Astronomy
New Mexico State University, USA

...on behalf of the U.S. SONG consortium...

March 29, 2010
SONG – Third Workshop
Beijing, China
The U.S. Team

- Jon Hakkila (CoC)
 James Neff
 Joe Carson
 George Chartas
 Laura Penny
 Bob Dukes
- Bernie McNamara (NMSU)
 Jon Holtzman
 Tom Harrison
 Jason Jackiewicz
- Travis Metcalfe (HAO)
 Michael Thompson
 Michael Knölker
- Frank Hill (NSO/NOAO)
- Joyce Guzik (LANL)
- Marc Pinnsonneauault (OSU)
- Andrew Gould
- Scott Gaudi
- Sara Seager (MIT)
- Jesper Schou (Stanford)
- Dimitar Sasselov (CfA)
- Scot Kleinman (Gemini Obs.)
 Atsuko Nitta-Kleinman

... in consultation with Denmark and colleagues worldwide
Outline

1. Current Proposal
 - What funding agencies want
 - Sites

2. U.S. Complimentary Projects

3. Future

4. Conclusions
Current Proposal

- What funding agencies want
 - Sites

U.S. Complimentary Projects

Future

Conclusions
Intellectual merit
Intellectual merit

White paper for Astro 2010 decadal survey

“...astroseismology is the next frontier in stellar astrophysics ...”
Intellectual merit

White paper for Astro 2010 decadal survey

“...astroseismology is the next frontier in stellar astrophysics ...”

- convection, low-metallicity stars, helium abundances,
 (internal) rotation, rigorous tests of theory of stellar evolution
Intellectual merit

White paper for Astro 2010 decadal survey

“...asteroseismology is the next frontier in stellar astrophysics ...”

- convection, low-metallicity stars, helium abundances, (internal) rotation, rigorous tests of theory of stellar evolution

- small planet/large orbit detections, planetary-formation theories and statistics, context for our own solar system
Intellectual merit

White paper for Astro 2010 decadal survey

“...asteroseismology is the next frontier in stellar astrophysics ...”

- convection, low-metallicity stars, helium abundances, (internal) rotation, rigorous tests of theory of stellar evolution
- small planet/large orbit detections, planetary-formation theories and statistics, context for our own solar system
- GRB afterglow, Doppler imaging, solar oscillation measurements, etc.
Broad scientific impacts

- train the next generation of scientists and engineers
Broad scientific impacts

- train the next generation of scientists and engineers
- access for traditionally underrepresented students
Broad scientific impacts

- train the next generation of scientists and engineers
- access for traditionally underrepresented students
- effects on the broader astronomical/astrophysical/scientific community
Broad scientific impacts

- train the next generation of scientists and engineers
- access for traditionally underrepresented students
- effects on the broader astronomical/astrophysical/scientific community
- public outreach
Our strategy - merit

- 2 exact replicas of SONG prototype
Our strategy - merit

- 2 exact replicas of SONG prototype
- telescope and dome purchased from Astelco
Our strategy - merit

- 2 exact replicas of SONG prototype
- telescope and dome purchased from Astelco
- optics and spectrograph assembled at NOAO
Our strategy - merit

- 2 exact replicas of SONG prototype
- telescope and dome purchased from Astelco
- optics and spectrograph assembled at NOAO
- utilize Danish SONG software systems
Our strategy - merit

- 2 exact replicas of SONG prototype
telescope and dome purchased from Astelco
optics and spectrograph assembled at NOAO
utilize Danish SONG software systems
expected ~ 75% duty cycle with all three sites
Our strategy - merit

- 2 exact replicas of SONG prototype
- telescope and dome purchased from Astelco
- optics and spectrograph assembled at NOAO
- utilize Danish SONG software systems
- expected $\sim 75\%$ duty cycle with all three sites
- follow up observations with consortium resources - Charleston’s robotic photometric telescope at Fairborn Obs., robotic 0.5m in the U.S. Virgin Islands, NMSU’s 1m and 3.5m, etc.
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus

- introduce undergraduates to SONG data - time series analysis, stellar variability, “lucky” images, signal processing
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus

- introduce undergraduates to SONG data - time series analysis, stellar variability, “lucky” images, signal processing

- access to state-of-the-art facilities for minority students in at least 2 locations
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus
- introduce undergraduates to SONG data - time series analysis, stellar variability, “lucky” images, signal processing
- access to state-of-the-art facilities for minority students in at least 2 locations
- will make CoC a premier institution of undergraduate astronomical research
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus
- introduce undergraduates to SONG data - time series analysis, stellar variability, “lucky” images, signal processing
- access to state-of-the-art facilities for minority students in at least 2 locations
- will make CoC a premier institution of undergraduate astronomical research
- 1 year proprietary data period
Our strategy - impacts

- student pipeline - CoC - NMSU - other U.S. universities - Aarhus

- introduce undergraduates to SONG data - time series analysis, stellar variability, “lucky” images, signal processing

- access to state-of-the-art facilities for minority students in at least 2 locations

- will make CoC a premier institution of undergraduate astronomical research

- 1 year proprietary data period

- expand partners as the telescopes come online - equal access to all SONG data for members
Things to address

- secondary science will not detract from main objectives
Things to address

- secondary science will not detract from main objectives

- planetary microlensing detections and non detections will provide important information statistically
Things to address

- secondary science will not detract from main objectives

- planetary microlensing detections and **non** detections will provide important information statistically

- how to make asteroseismology, in particular, suitable for undergraduates in the classroom
1 Current Proposal
 - What funding agencies want
 - Sites

2 U.S. Complimentary Projects

3 Future

4 Conclusions
Possible U.S. locations
Network integration
Mauna Loa Solar Observatory, Hawaii
Mauna Loa

- Operated by the High Altitude Observatory (HAO)/National Center for Atmospheric Research (NCAR)
- 3400 meters
- currently only a daytime facility
- we will need a part-time night astronomer for SONG
- mostly instruments for chromospheric and coronal studies + GONG
- hundreds of publications from these data
Kitt Peak National Observatory, Arizona
Kitt Peak

- operated by the National Optical Astronomy Observatory (NOAO)
- 2100 meters
- large collection of night and daytime telescopes
- WIYN and NSO McMath-Pierce/SOLIS
Apache Point Observatory, New Mexico

Latitude 32° 46' 49" N Longitude 105° 49' 13" W
Elevation 2788 meters
Apache Point

- operated by New Mexico State University and the Astrophysical Research Consortium (ARC)
- 2788 meters
- Sloan Digital Sky Survey (SDSS), ARC 3.5m, and the NMSU 1m
- shares the mountain top with the NSO
Current Proposal
- What funding agencies want
- Sites

U.S. Complimentary Projects

Future

Conclusions
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry
 (see many talks this week)
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)

- Will survey the whole sky to 24th magnitude every week
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)

 will survey the whole sky to 24th magnitude every week

 will help with possible targets, exoplanet searches and triggers, variable star classifications
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)

 will survey the whole sky to 24th magnitude every week

 will help with possible targets, exoplanet searches and triggers, variable star classifications

 first component (PS1) already underway
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)

 - will survey the whole sky to 24th magnitude every week
 - will help with possible targets, exoplanet searches and triggers, variable star classifications

- first component (PS1) already underway

- **LSST**: Large Synoptic Survey Telescope (8.4m, Chile)
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)
 - will survey the whole sky to 24th magnitude every week
 - will help with possible targets, exoplanet searches and triggers, variable star classifications

- **first component (PS1) already underway**

- **LSST**: Large Synoptic Survey Telescope (8.4m, Chile)
 - will image the entire southern sky every few days providing real-time alerts for SONG
Primary science objectives

- **Kepler**: planet hunting/asteroseismology space photometry (see many talks this week)

- **Pan-STARSS**: Panoramic Survey Telescope & Rapid Response System (Hawaii)
 - will survey the whole sky to 24th magnitude every week
 - will help with possible targets, exoplanet searches and triggers, variable star classifications
 - first component (PS1) already underway

- **LSST**: Large Synoptic Survey Telescope (8.4m, Chile)
 - will image the entire southern sky every few days providing real-time alerts for SONG
Secondary science objectives

- NASA’s Fermi and Swift satellites for GRB follow up
Secondary science objectives

- NASA’s *Fermi* and *Swift* satellites for GRB follow up

- *GONG + Solar Dynamics Observatory (SDO)* for solar measurements and calibrations in the daytime
1. Current Proposal
 - What funding agencies want
 - Sites

2. U.S. Complimentary Projects

3. Future

4. Conclusions
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program

 proposal deadline: 21 April 2010
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
- proposal deadline: 21 April 2010
- $4 million cap
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
- Proposal deadline: 21 April 2010
- $4 million cap
- 1 node proposed this year, 1 node next year
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
- proposal deadline: 21 April 2010
- $4 million cap
- 1 node proposed this year, 1 node next year
- 3-year limit to become operational
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
- proposal deadline: 21 April 2010
- $4 million cap
- 1 node proposed this year, 1 node next year
- 3-year limit to become operational
- U.S. SONG workshop March 2011 in Charleston, S.C.
 → solicit community input, new members, and visibility
Timeline

- National Science Foundation (NSF) Major Research Instrumentation program
 - proposal deadline: 21 April 2010
 - $4 million cap
 - 1 node proposed this year, 1 node next year
 - 3-year limit to become operational
- U.S. SONG workshop March 2011 in Charleston, S.C. → solicit community input, new members, and visibility
- “recruit” from the Kepler U.S. science teams since the science objectives overlap
Alternatives

- retrofit of existing 1m telescopes (like NMSU)

- other sources of funding besides NSF

- additional instruments for U.S. SONG nodes to attract other potential collaborators
1 Current Proposal
 - What funding agencies want
 - Sites

2 U.S. Complimentary Projects

3 Future

4 Conclusions
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes

- Need supporting members - time, expertise, ideas, students, money!
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes

- Need supporting members - time, expertise, ideas, students, money!

- (initially) 10 U.S. consortium members by the end of year 3
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes
- Need supporting members - time, expertise, ideas, students, money!
- (initially) 10 U.S. consortium members by the end of year 3
- contribute about $10 thousand per year for operating costs
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes
- Need supporting members - time, expertise, ideas, students, money!
- (initially) 10 U.S. consortium members by the end of year 3
- contribute about $10 thousand per year for operating costs
- identify future sources of funding
Where we are now

- the U.S. has a very determined core team to produce 2 SONG nodes

- Need supporting members - time, expertise, ideas, students, money!

- (initially) 10 U.S. consortium members by the end of year 3

- contribute about $10 thousand per year for operating costs

- identify future sources of funding

- suggestions wanted!