Status Update on kronoseismology

ETHAN DEDERICK JIVE MEETING JUNE 26, 2017

Why Saturn & Not Jupiter?

1. We have the necessary observations to perform seismic inversions given a Saturn model

2. We're building the framework to capitalize on the measurements obtained from Jupiter

Given recent Juno announcements, the planet model may be significantly different between Saturn and Jupiter

Mode Resonances

Unlike Jupiter (at least for now), we know which modes exist

ILR launched by satellite. Spiral density wave propagates away from the planet.

OLR launched by oscillation. Spiral density wave propagates toward the planet.

Mode Resonances

Most density-wavelike patterns in the C ring do not match any known satellite resonances.

Taken from Nicholson & Hedman: Kronoseismology II

All Resonances

Baille no. Rosen ID HN13/14 a (res) In/Out? m value pattern speed res_type source notes refere 1 74666 0 7 1725.8 OVR f mode (10,7)? bending wave? RGF, C	осе И 1, HN14 И
1 74666 O 7 1725.8 OVR f mode (10,7)? bending wave? RGF, C	M 1, HN14 VI
1 74666 0 7 1725.8 OVR f mode (10,7)? bending wave? RGF, C	M 1, HN14 VI
	1, HN14 VI
2 a 74892 O 2 763 ILR Mimas 4:1 Rosent	М
3 74933 O 4 1879.7 OVR f mode (5,4) bending wave? RGF, C	V
4 b 74941 O 9 1667.7 OVR f mode (14,9)? bending wave? RGF, C	M
5 76018 I 9 1626.5 OLR f mode (13,9) RGF, C	M
6 76237 O 8 1645.4 OVR f mode (11,8)? bending wave?; within P1 RGF, C	M
9 76438 I 2 2169.2 OLR f mode (4,2)? RGF, C	M
76460 I alpAur (41)	
10 76539 ? narrow gap?	
11 76729 ? on peak; narrow gap?	
12 c 77520 O 1 22.577 IVR Titan -1:0 bending wave; neg pat. Speed RL88,	VH16
13 e W80.98 80988 I 4 1660.4 OLR f mode (4,4) HN13	
14 W81.02 81024 I? bending wave? HN13	6
15 W82.01 82010 I 3 1736.6 OLR f mode (3,3) HN13	
16 f W82.06 82061 I 3 1735 OLR f mode (3,3) HN13	
17 g W82.21 82209 I 3 1730.3 OLR (fmode (3,3) HN13	
18 h W83.63 83633 I 10 1394.1 OLR f mode (10,10) HN14	
19 i W84.64 84644 i 2 1860.8 OLR f mode (2,2) HN13	
20 W84.82 84814 O 3 833.5 ILR tesseral 3:2 within P5 HN14	
21 W84.86 84857 O 3 833 ILR tesseral 3:2 within P5 HN14	
22 85105 ? 2 606? ILR Pan 2:1 ?	
23 i 85450 i 3? IVR? tesseral 3:2 bending wave?	
24 85473 0	
25 85514 I 3? IVR? tesseral 3:2 bending wave?	
26 85523 0	
27 d W85.67 85677 O 3? 810.2 IVR? tesseral 3:2 bending wave?; within P6 HN14	**
28 W86.40 86400 O 3 810.4 ILR tesseral 3:2 within P7 HN14	
29 W86.58 86576 O 3 807.9 ILR tesseral 3:2 within P7 HN14	
31 W86.59 86590 O 3 807.7 ILR tesseral 3:2 at edge of P7 HN14	
32 W87.19 87193 2 1779.5 OLR f mode (2,2) on a peak HN13	
87533 I 2 1769.15 OLR f mode (2,2) within Maxwell ringlet French	16
33 87647 O 2 598? ILR Atlas 2:1 ?	
34 88713 O? 2 587? ILR Prometheus 2:1 within Bond ringlet	
35 88736 O 1 14.03 ILR Bond ringlet? Outside Bond gap HN14	
36 89883 0 3 763 ILB Mimas 6:2 within P10 Baillie	1. HN14
37 89894 0 3 762.85 ILB Pandora 4:2 within P10 Baillie	1. HN14
38 90156 ? 2 572? ILR Pandora 2:1 within Dawes ringlet	

Goal

Optical

Variation

Depth

To utilize theoretical models and observational mode frequencies to perform inversions

m = -2

Steps

- 1. Derive Kernel expressions
- 2. Create sophisticated Saturn model
- 3. Compute eigenfunctions and eigenfrequencies
- 4. Perform inversions
- 5. Check if the results are within acceptable errors
- 6. Repeat

Kernel Expressions

$$\frac{\delta\omega_{n,l}}{\omega_{n,l}} = \int_0^R \left[K_{nl}^{c,\rho}(r) \frac{\delta c}{c}(r) + K_{nl}^{\rho,c}(r) \frac{\delta \rho}{\rho}(r) \right] \mathrm{d}r$$

Kernel Expressions

$$\frac{\delta\omega_{n,l}}{\omega_{n,l}} = \int_0^R \left[K_{nl}^{c,\rho}(r) \frac{\delta c}{c}(r) + K_{nl}^{\rho,c}(r) \frac{\delta \rho}{\rho}(r) \right] \mathrm{d}r$$

$$\begin{split} K_{nl}^{\rho,c_s}(r) &= \left(\omega^2 E_{nl} - 2i\omega\Omega_s \int_0^R Z_s \rho r^2 dr\right)^{-1} \rho r^2 \left[-\frac{\omega^2}{2} \left(\tilde{\xi}_r^{\ 2} + l(l+1)\tilde{\xi}_h^{\ 2}\right) + \frac{1}{2} c_s^2 D_1^2 \right. \\ &+ \frac{2Gm}{r^3} \tilde{\xi}_r \left[\tilde{\xi}_r \left(\frac{\pi \rho r^3}{m} - 1 \right) + \frac{1}{2} l(l+1)\tilde{\xi}_h \right] \\ &- 4\pi G \int_r^R \rho \tilde{\xi}_r \left[D_1 + \frac{1}{2} \tilde{\xi}_r^{\ } \frac{\partial \ln \rho}{\partial r} \right] dr' \\ &- \frac{2\pi G}{2l+1} (l+1) r^{-l-2} \left(\tilde{\xi}_r^{\ } - l\tilde{\xi}_h^{\ } \right) \left(\int_0^r D_2(r') r'^{l+2} dr' \right) \\ &+ \frac{2\pi G}{2l+1} lr^{l-1} \left(\tilde{\xi}_r^{\ } + (l+1)\tilde{\xi}_h^{\ } \right) \left(\int_r^R D_2(r') r'^{-l+1} dr' \right) \\ &- \frac{8\pi^2 G}{2l+1} \rho(R) \tilde{\xi}_r(R) \left(\frac{r}{R} \right)^{l-1} l \left(\tilde{\xi}_r^{\ } + (l+1)\tilde{\xi}_h^{\ } \right) + 2i\omega\Omega_s Z_s \end{split}$$

$$K_{nl}^{c_s,\rho}(r) = \left(\omega^2 E_{nl} - 2i\omega\Omega_s \int_0^R Z_s \rho r^2 dr\right)^{-1} \rho r^2 c_s^2 D_1^2$$

Saturn Model

y-axis units are arbitrary

Eigenfunctions – Non-Rotating

Eigenfunctions – Non-Rotating

Mode mixing can occur without rotation if Brunt-Vaisala frequency is large enough to allow for g-modes of frequency close to that of f-modes

Eigenfunctions – Rotating (10 Hrs)

Before Rotational Mixing

2 f-mode ring candidates – shows importance of Brunt – Vaisala frequency

Eigenfunctions – Rotating (10 Hrs)

After Rotational Mixing

Mixing Coefficients – Non-Rotating

Mixing Coefficients – Rotating (10 Hrs)

Mixing Coefficients – Rotating (10 Hrs)

Kernels – f-modes

Kernel<u>s – other modes</u>

Future Work – Inversions

- Subtractive Optimally Localized Averages (SOLA) procedure
- Sum weighted kernels to match a target function at a specified radius

$$\overline{p}^{\alpha}(r_0) = \sum_{i=1}^{N} a_i^{\alpha}(r_0) \frac{\delta \omega_i}{\omega_i}$$

Taken from Jackiewicz et al. 2012

Inversion Trouble

Limited by the number of observed modes

Taken from Jackiewicz et al. 2012

Conclusion

- 1. Derive Kernel expressions
- 2. Create sophisticated Saturn model
- 3. Compute eigenfunctions and eigenfrequencies
- 4. Perform inversions
- 5. Check if the results are within acceptable errors
- 6. Repeat
- Progress is on schedule and should be complete by March 2018
- Once we receive Jupiter observations we can quickly repeat for Jupiter