
Unit 13

Energy Transport: Radiation

Energy liberated in stellar interiors is transferred to the surface by radiation, convection, and conduction.
We are not considering here radiation from a stellar photosphere, only the movement of photons in stellar
interiors.

13.1 Basics

• The basic idea is that photons emitted in hot regions of a star are absorbed in cooler regions of a star,
thus “transferring” energy from hot to cool.

• As we’ll soon see, the “efficiency” of this transfer will depend on the temperature gradient. A very
rough approximation of the gradient for the Sun is dT/dr ≈ (Tsurf − Tcore)/(rsurf − rcore) ≈ Tc/R⊙ ≈

−2.25× 10−4 Kcm−1.

• Figure 13.1 shows this number compared to the “true” temperature gradient in the interior of the Sun.
Clearly there is more physics taking place than we’ve considered so far.

• The efficiency of radiation will also depend on the ability of the photons to travel freely.

• Consider the luminosity roughly as the (total radiation energy stored in the star) divided by the (escape
time for photons).

• The radiation energy is the energy density of photons (Eq. 8.4), say, at the central temperature of the
star (the Sun in this case)

Eγ = aT 4
c ·

4π

3
R3

⊙. (13.1)

• For the photon escape time, let’s first consider that the Sun were completely transparent to photons.
The time would then be R⊙/c = 2.32 s. The resulting luminosity would be quite large!

EXAMPLE PROBLEM 13.1: If we regard the Sun as a large cavity filled with photons, compute the

luminosity by estimating the total energy stored in the radiation field and the Sun becoming completely

transparent. Express the luminosity in L⊙.

• More formally, the mean free path of photons can be expressed as

ℓph =
1

κρ
, (13.2)

where κ is some absorption coefficient (in units of cross section per unit mass) that will be given a
physical meaning later, and ρ is the mass density.

75



76 UNIT 13. ENERGY TRANSPORT: RADIATION
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Figure 13.1: The interior temperature gradient of a solar model. Also plotted is a simple estimate of the gradient ∼ Tc/R⊙.

• Again for some typical interior solar values. κ ≈ 1 cm2 g−1 and simply a mean density of ρ ≈ 1.4 g cm−3,
gives a mean free path of ℓph ≈ 1 cm, not too inconsistent with the earlier estimate, but still quite
small.

• Nonetheless, radiative transport occurs by the non-vanishing net flux outward, due to the hotter
material below which sets up the gradient.

• Because of the small mean free path, transport can be treated as a diffusion process in the interior.
(Near the surface, however, this simplification starts to break down).

13.2 Diffusion

• Quick and dirty derivation of Fick’s Law of diffusion, just to get the point across.

• Consider particles diffusing (randomly) in 3D space at some boundary r.

• Let n be the particle number density, v be the mean velocity, and ℓ the mean free path, such that
ℓ = 1/σn, with σ the cross section.

• Consider isotropy. Then about 1/3 of the particles will be moving in the r̂ direction. About 1/2 of
those will be moving in the −r̂ direction

• Flux is a quantity (like number of particles or energy) per unit area per unit time.

• From one direction, the particle flux is

F+ =
1

6
nr−ℓvr−ℓ (13.3)

• From the other direction

F− =
1

6
nr+ℓvr+ℓ (13.4)
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• Net flux

F = F+ − F− =
1

6
v(nr−ℓ − nr+ℓ), (13.5)

assuming that vr−ℓ ≈ vr+ℓ = v.

• If the mean free path does not change on the scale of the density gradient, then

F =
1

6
v [nr−ℓ − nr − (nr+ℓ − nr)]

=
1

6
v

[

−ℓ
dn

dr
− ℓ

dn

dr

]

F = −D∇rn,

where the diffusion coefficient D = 1/3 v ℓ. This is Fick’s Law. Again, if ℓ is large, this fails.

• This is generic. On the left you have a flux (in this case of number of particles) and on the right a
gradient of density (in this case number density of particles). Note that the flux is carried from a high
concentration to a low concentration of particles.

• But we want to compute the flux of diffusing radiative energy. So we need an energy density.

• For photons, we can just let v = c, ℓ = ℓph = 1/κρ, and n = u. See Equation (8.3) and note that
u = 3P for a relativistic system, as derived previously, which gives

u = aT 4. (13.6)

• So then the radiative flux Frad is

Frad = −
4ac

3

T 3

κρ

dT

dr
. (13.7)

• The local luminosity at any point passing through a sphere of radius r is L(r) = 4πr2Frad, so then
rearranging we have

dT

dr
= −

3

16πac

κρ

r2
L

T 3
. (13.8)

• This is a fundamental equation of stellar structure.

13.3 Frequency dependence of radiation

• What we just did was too simple, even in the diffusion approximation. Our answer is in fact integrated
over all photon energies.

• In principle, there is a frequency dependence on the flux Fν since the energy density and the opacity
are partitioned in frequency.

• Let us go back to Equation (13.6) and instead consider

uν =
4π

c
Bν(T ), (13.9)

where B is the Planck function for a blackbody radiator

Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
. (13.10)

This is just from our Bose-Einstein distribution function, Equation (8.1), written in terms of frequency
instead of momentum.
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• Also keep in mind that the integrated Planck function

B(T ) =

∫ ∞

0

Bν(T ) dν =
ac

4π
T 4. (13.11)

• Fick’s Law now becomes

Fν = −
4π

3

1

κνρ

dBν

dr
= −

4π

3

1

κνρ

dBν

dT

dT

dr
. (13.12)

• The total flux integrated over all frequencies is then

Frad =

∫

Fν dν = −
4π

3

1

ρ

dT

dr

∫ ∞

0

1

κν

dBν

dT
dν. (13.13)

• Comparing Equation (13.13) with Equation (13.7), we see that the κ in the latter is

1

κ
=

π

ac

1

T 3

∫ ∞

0

1

κν

dBν

dT
dν. (13.14)

• But since
∫ ∞

0

dBν

dT
dν =

d

dT

∫ ∞

0

Bνdν =
dB

dT
=

ac

π
T 3, (13.15)

where B = acT 4/4π (the integral over all frequencies), we can then define

1

κR

≡
1

κ
=

(
∫ ∞

0

1

κν

dBν

dT
dν

)(
∫ ∞

0

dBν

dT
dν

)−1

, (13.16)

where κR is the Rosseland mean opacity.

• All this implies is that Equations (13.7) and (13.8) should replace the opacity by the Rosseland mean
opacity:

Frad = −
4ac

3

T 3

κRρ

dT

dr
, (13.17)

dT

dr
= −

3

16πac

κRρ

r2
L

T 3
. (13.18)

• Note that this weighted opacity gives high frequencies more weight than lower ones (as one could find
by differentiating).

• Before we go onto using these expressions to understand stellar structure, let’s look at a few of the
major sources of κR.
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