Unit 13

Energy Transport: Radiation

Energy liberated in stellar interiors is transferred to the surface by radiation, convection, and conduction.
We are not considering here radiation from a stellar photosphere, only the movement of photons in stellar
interiors.

13.1 Basics

e The basic idea is that photons emitted in hot regions of a star are absorbed in cooler regions of a star,
thus “transferring” energy from hot to cool.

e As we’ll soon see, the “efficiency” of this transfer will depend on the temperature gradient. A very
rough approximation of the gradient for the Sun is d7'/dr = (Tsurt — Tcore)/ (Tsurf — Teore) = Te/ R =~
—2.25 x 107*Kem ™.

e Figure 13.1 shows this number compared to the “true” temperature gradient in the interior of the Sun.
Clearly there is more physics taking place than we’ve considered so far.

e The efficiency of radiation will also depend on the ability of the photons to travel freely.

e Consider the luminosity roughly as the (total radiation energy stored in the star) divided by the (escape
time for photons).

e The radiation energy is the energy density of photons (Eq. 8.4), say, at the central temperature of the
star (the Sun in this case)
4m
E, =T, - ?R%. (13.1)

e For the photon escape time, let’s first consider that the Sun were completely transparent to photons.
The time would then be Rg/c = 2.32 s. The resulting luminosity would be quite large!

EXAMPLE PROBLEM 13.1: If we regard the Sun as a large cavity filled with photons, compute the
luminosity by estimating the total energy stored in the radiation field and the Sun becoming completely
transparent. Express the luminosity in L.

e More formally, the mean free path of photons can be expressed as

1
boh = —, 13.2
ph = P ( )
where r is some absorption coefficient (in units of cross section per unit mass) that will be given a
physical meaning later, and p is the mass density.
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Approximation
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Figure 13.1: The interior temperature gradient of a solar model. Also plotted is a simple estimate of the gradient ~ 7./ R .

e Again for some typical interior solar values. x ~ 1 cm? g~! and simply a mean density of p ~ 1.4gcm™3,

gives a mean free path of /,, ~ 1 cm, not too inconsistent with the earlier estimate, but still quite
small.

e Nonetheless, radiative transport occurs by the non-vanishing net flux outward, due to the hotter
material below which sets up the gradient.

e Because of the small mean free path, transport can be treated as a diffusion process in the interior.
(Near the surface, however, this simplification starts to break down).

13.2 Diffusion

e Quick and dirty derivation of Fick’s Law of diffusion, just to get the point across.
e Consider particles diffusing (randomly) in 3D space at some boundary r.

e Let n be the particle number density, © be the mean velocity, and ¢ the mean free path, such that
¢ =1/on, with o the cross section.

e Consider isotropy. Then about 1/3 of the particles will be moving in the # direction. About 1/2 of
those will be moving in the —# direction

e Flux is a quantity (like number of particles or energy) per unit area per unit time.

e From one direction, the particle flux is
F+ = —=Nyp_¢Upr_y (13.3)

e From the other direction
1
F_ = gnr+gir+g (134)
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e Net flux .
F = F+ —F_ = Eﬂ(nr,g - TLT+@), (135)

assuming that v,_y & v,y = 7.

e If the mean free path does not change on the scale of the density gradient, then

1

F = éﬁ [nr—ﬂ — Ny — (nr+€ - nr)]
1_ dn dn

F = —DV,n,

where the diffusion coefficient D = 1/3%¢. This is Fick’s Law. Again, if ¢ is large, this fails.

e This is generic. On the left you have a flux (in this case of number of particles) and on the right a
gradient of density (in this case number density of particles). Note that the flux is carried from a high
concentration to a low concentration of particles.

e But we want to compute the flux of diffusing radiative energy. So we need an energy density.

e For photons, we can just let 7 = ¢, £ = £, = 1/kp, and n = u. See Equation (8.3) and note that
u = 3P for a relativistic system, as derived previously, which gives

u=aT*. (13.6)
e So then the radiative flux Fiuq is .
4acT? AT
Fopg=—7-——. 13.7
d 3 kpdr ( )

e The local luminosity at any point passing through a sphere of radius r is L(r) = 4mr2F..q, so then
rearranging we have
dr 3 kp L
dr  16macr? T3

(13.8)

e This is a fundamental equation of stellar structure.

13.3 Frequency dependence of radiation

e What we just did was too simple, even in the diffusion approximation. Our answer is in fact integrated
over all photon energies.

e In principle, there is a frequency dependence on the flux F), since the energy density and the opacity
are partitioned in frequency.

e Let us go back to Equation (13.6) and instead consider
4
u, = %BV(T), (13.9)
where B is the Planck function for a blackbody radiator

(13.10)

This is just from our Bose-Einstein distribution function, Equation (8.1), written in terms of frequency
instead of momentum.
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Also keep in mind that the integrated Planck function

B(T) = /OOO B,(T)dv = %T‘*. (13.11)

Fick’s Law now becomes
dr 1 dB, 4w 1 dB,dT

F,=—— = 13.12
3 Kkyp dr 3 kyp dT dr ( )
The total flux integrated over all frequencies is then
Ar1dT [ 1 dB,
Fopa= | F,dv = ——~-— — dv. 13.13
d / v 3pdr )y K, dT Y ( )
Comparing Equation (13.13) with Equation (13.7), we see that the x in the latter is
1 71 [~ 1dB,
- = —— — dv. 13.14
Kk acT3 /0 Ky dT v ( )
But since ~ 4B d - 4B
ac
Ydv = — B,dy = — = —T3, 13.15
/0 ar VT ar ), YT T T (13.15)

where B = acT* /47 (the integral over all frequencies), we can then define

1 * 1 dB, ©dB, ~ \ !
_1_ L 13.1
KR K (/0 K, dT dy) (/0 dT dy) ’ (13.16)

where kg is the Rosseland mean opacity.

All this implies is that Equations (13.7) and (13.8) should replace the opacity by the Rosseland mean
opacity:

dac T? dT
Fog = ——f2 2 13.17
d 3 krpdr ( )
dT 3 kmrp L
- = _ = 13.1
dr 16mac r2 T3 (13.18)

Note that this weighted opacity gives high frequencies more weight than lower ones (as one could find
by differentiating).

Before we go onto using these expressions to understand stellar structure, let’s look at a few of the
major sources of Kg.
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