
Unit 12

Thermodynamics with Photons

12.1 Mixture of ideal gas and radiation: pressure effects

• It should be noted that we have been considering an ideal gas made up of particles only. When radiation
is present along with the gas in thermodynamic equilibrium, the photons can cause two changes: (1)
a radiation pressure; and (2) ionization effects (see Sec. 12.2). In this case, the adiabatic exponents in
Eqs. (11.12-11.15) are not constant anymore, nor are they all equal.

• Considering this mixture, the total pressure is

P = Pgas + Prad =
ρkBT

µmu

+
1

3
aT 4, (12.1)

and specific internal energy density

U =
3

2

kBT

µmu

+ aT 4V. (12.2)

• Since the specific energy depends on volume and temperature U(T, V ), quasistatic changes to it in the
first law of thermodynamics yields

dQ =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV + PdV. (12.3)

• Using the expression for the specific energy and pressure then gives

dQ =

(

4aT 3V +
3

2

kB
µmu

)

dT +

(

4

3
aT 4 +

kBT

µmuV

)

dV. (12.4)

• For an adiabatic process, this equation gives the thermodynamic response to changes in temperature
and volume. It can then be nicely rewritten

(

12Prad +
3

2
Pgas

)

dT

T
+ (4Prad + Pgas)

dV

V
= 0. (12.5)

• To evaluate expressions as in Equations (11.12)-(11.15), it’s also useful to have a pressure differential
term. Using Equation (12.1) we can write

dP =

(

4

3
aT 4 +

RT

µV

)

dT

T
−

R

µ

T

V

dV

V
,

= (4Prad + Pgas)
dT

T
− Pgas

dV

V
. (12.6)
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Figure 12.1: The various adiabatic exponents for different mixtures of ideal gas particles and photons.

• Plugging this into Equation (11.12) gives

(4Prad + Pgas)
dT

T
+ [Γ1(Prad + Pgas)− Pgas]

dV

V
= 0. (12.7)

• Comparing Equation (12.5) and Equation (12.7) allows us to solve for Γ1. It simplifies things to
consider the fractional gas pressure as was done previously

β ≡
Pgas

Pgas + Prad

. (12.8)

• You can then show that

Γ1 =
32− 24β − 3β2

24− 21β
. (12.9)

• For a gas of particles, β = 1, and therefore Γ1 = 5/3 = γ, which is what we already found for an ideal
gas. For a photon gas, β = 0 and Γ1 = 4/3.

• In a similar fashion,

Γ2 =
32− 24β − 3β2

24− 18β − 3β2
, (12.10)

Γ3 =
32− 27β

24− 21β
. (12.11)

See Figure 12.1 for the dependence of these on β.

• Using the equations we just developed, the specific heats can also be computed:

cV =

(

dQ

dT

)

V

= c0V
8− 7β

β
, (12.12)

cP =

(

dQ

dT

)

P

= c0V
32/3− 8β − β2

β2
, (12.13)

(12.14)

where c0V = 3
2
R
µ is the ideal gas-only value.
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Figure 12.2: Ionization of a pure H gas using Equation (12.19). The lower line represents the state at 50% ionization,
while the upper is for 99%.

• Note that the ratio of specific heats gives
cP
cV

=
Γ1

β
, (12.15)

which makes sense in the appropriate limits, reducing to what we found before.

• The same procedure can be carried out for mixtures of some degenerate gas too.

12.2 Mixture of ideal gas and radiation: ionization effects

• As mentioned at the beginning of this section, the other consideration is the ionization of the gas that
radiation produces, which has profound effects on the thermodynamic state of the gas.

• Let’s just consider a hydrogen gas for simplicity in what follows.

• In general radiation causes ionization and subsequent recombination:

H+ + e− ←→ H0 + χH, (12.16)

where χH = 13.6 eV is the energy needed to ionize hydrogen. We will only consider the ground state.

• To measure the number densities of electrons (ne), ions (n+), and neutral H (n0) in thermodynamic
equilibrium, we employ the tools we used in Sec. 6.1 using a Boltzmann distribution.

• After taking into account the appropriate degeneracy factors and energy levels and chemical potentials,
we can form the ratio n+ne/n

0 using Equation (6.12) and obtain the Saha equation for a pure hydrogen
gas

n+ne

n0
=

(

2πmekB
h2

)3/2

T 3/2e−χH/kT . (12.17)

• We constrain the system to have charge neutrality, ne = n+ and nucleon number density n+ +n0 = n.
Then we define the fraction of ionization

y =
ne

n
=

n+

n
, (12.18)

as we did in Equation (5.16).
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Figure 12.3: The specific heat at constant volume for H at different densities (in g cm−3). The familiar value of 3/2 is
found for lower temperatures before ionization takes place. Full ionization occurs at the highest temperatures where the
value reaches 3, which is twice the value of neutral gas because the number of particles per gram is twice as large.

• Then the Saha equation is

y2

1− y
=

1

n

(

2πmekB
h2

)3/2

T 3/2e−χH/kT . (12.19)

• We already see that at high temperatures we expect either collisions or a strong radiation field to ionize
the gas y → 1.

• We recognize for a pure hydrogen gas that n = ρ/µmu with µ = 1, so Equation (12.19) can be solved
for a given ionization fraction in terms of temperature and mass density.

• Figure 12.2 shows the necessary conditions for 50% and 99% ionization.

• Note that at about 104 K is the half ionization point for hydrogen, only weakly dependent on density.

• A good rule of thumb is that a temperature for half ionization is χ/kT ∼ 10 to within a factor of a
few depending on density.

• Recall that 1eV ∼ 104 K. So , for example, the first ionization potential of He is 24.6 eV. Thus at
about 3 × 104 we’d expect ionization to take place, and about double that temperature for removing
the 2nd He electron.

• Given the number densities, we can compute the pressure and internal energy as in previous cases and
then the full thermodynamic set of quantities.

• Recognize that the pressure

P = (ne + n+ + n0)kBT = (1 + y)NρkBT, (12.20)

since Nρ = n = n+ + n0. N is the total nucleon number (ions plus neutrals) per unit mass, and is
independent of density, thus constant.

• The specific internal energy is

U =
3

2
(1 + y)

n

ρ
kBT + y

n

ρ
χH =

3

2
(1 + y)NkBT + yNχH, (12.21)

This can be understood since, to completely ionize the gas, we need to add NχH to strip off the
electrons, and another 3/2NkT to bring the ions up to the ambient temperature.
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Figure 12.4: Adiabatic exponents for ionized H at a density of 10−4 g cm−3.

• From these expressions the specific heats can be computed from the appropriate differentials. Since
U = U(T, y), and cV = dU/dT , we get extra terms.

• It works out to be

cV =
3

2
NkB(1 + y)

[

1 +
2

3
D(y)

(

3

2
+

χH

kBT

)2
]

, (12.22)

where

D(y) =
y(1− y)

(2− y)(1 + y)
. (12.23)

• Note that D(0) = D(1) = 0, so the specific heat only changes by 1 + y as the gas goes from neutral
to fully ionized. But D is finite for intermediate values of y, thus bringing in contributions from the
other terms.

• A few examples of cV are shown in Figure 12.3 for several densities.

• Finally, the adiabatic exponents can be computed in similar ways using the prior results and Eqs. (11.12)-
(11.15).

• Their values for a density of 10−4 across the ionization fraction range is shown in Figure 12.4.

• The Γi all take their ideal gas values for full ionization and for complete neutrality.

• Where ionization occurs, the values decrease quickly, and then increase again as ionization completes.

• To understand this, consider adiabatic compression of the gas, and let’s focus on Γ3, which, according
to Equation (11.15), relates the temperature and volume.

• Before ionization, we see the value of 5/3 for the neutral gas, which simply means it is heating up
under compression as T ∼ ρ2/3 ∼ V −2/3.

• When ionization starts to occur, the value decreases, and the temperature sensitivity on volume is
weaker. The energy is used to ionize the gas, instead of heating it up as quickly.
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12.3 Useful ideal gas equations

Let’s collect many of the useful relationships:

P =
ρRT

µ
=

ρkBT

m
(12.24)

Pρ−γ = const (12.25)

cs =

√

γRT

M
=

√

γP

ρ
(12.26)

CP − CV = R/µ (12.27)

CV =
3

2

R

µ
(12.28)

CP =
5

2

R

µ
(12.29)

U =

∫ M

0

CV T dm′ (12.30)
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