Unit 11

Thermodynamics of an Ideal Gas

11.1 First law of thermodynamics

e Here we consider quasistatic changes to the state of a nondegenerate gas to understand its thermody-
namic properties. Thermodynamics are “responses” of a gas to perturbations.

e As already stated, the internal energy per unit volume of an ideal gas is

kT
w= Snkyr = 22T _3p (11.1)
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e Therefore the average energy per particle is 3/2kpT. Example problem 6.1 arrived at this in a slightly
different way.

e We define the specific volume V as the volume corresponding to unit mass, V = volume/mass = 1/p.
The specific internal energy is the internal energy per unit mass U = u/p:
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(11.2)

e Remember that the first law of thermodynamics tells us that we can (slowly) change the internal energy
of gas by adding heat or doing work:

AU = dQ + dw, (11.3)

where U is the specific internal energy of the matter, V is the specific volume it occupies, and d@ is
some amount of heat added to it.

e The work done is to contract or expand it, so dW = —PdV.

e The more proper form for our use is
d@ =dU + PdV. (11.4)

This heat partly changes the internal energy of the matter and also potentially changes the volume.

e Keeping the volume constant the first law of thermodynamics becomes

o= (@) _dU _3 ks _3R
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(11.5)

This is the specific heat at constant volume.
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e Now consider how to arrive at an expression for constant pressure. Rewrite the first law
dQ =dU + PdV + VdP — VdP =dU — VdP 4+ d(PV), (11.6)
k
d(PV) = d(NkpT) = . Bar, (11.7)
remembering that N =nV =n/p = p/(pmyp) = 1/pm,,.
e Then ) 5k
dQ =dU — VdP + —2-dT = = 24T — VdP, (11.8)
Hmy, 2 pmy,
by using Equation (11.2).
e Therefore the specific heat at constant pressure is
5 k 5R
cp=o——B =20 (11.9)
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Note that cp — cy = R/ p.

e Note also the ratio of specific heats, ¥ = ¢p/cy, which for an ideal gas v = 5/3 since the specific heats
are constants.

11.2 Adiabatic process

An adiabatic process is one in which no heat is added to the gas (d@ = 0).

In this special case, we can find expressions relating changes in P and V. Using the above expressions
we can show

dP dV kg dV dVv
= _ — = —cp)—. 11.10
CV(P + V> pmy V. (ev CP)V ( )
e Finally we see that
P T
d _ —VdV _ ’ydp _ 7 d . (11.11)
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e Since 7y is constant in this case, such equations can be readily integrated to yield relations such as
PV7 = const.

e Using the ideal gas law we can also write (just in terms of P, T, and V):

<g$€>s = y=-T, (11.12)
(gﬁf)s = =T, (11.13)
(gﬁi?)S - %EFQF: (11.14)
(giig) = 1-y=1-T;. (11.15)
(gﬁf)g = y-1=T5- 1 (11.16)

e The s means adiabatic, or at constant entropy, where dQ) = TdS.

e The connection between Eq. (11.12) and (11.13) is clear from the specific volume definition. Similarly
for Eq. (11.15) and (11.16).



11.2. ADIABATIC PROCESS
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EXAMPLE PROBLEM 11.1: Derive the 2 equations (11.10) and (11.11).

Answer: Begin with Equation (11.7) rewritten here:

PAV + VdP = " 47
Mp
For adiabatic processes, the first law gives us that
cydT = —PdV,
so that we have
kg 1
PdV +VdP = — —PdV.
wmy cy
Now divide through by PV and recall the relationship between the 2 specific heats to find
@V AP\ _ v
v " p) Ve
Collecting terms gives
P _ v _ dp

P —’77 Y P
The term with the log is just a different way of rewriting the above equation, such as
dlnP
dlnp — v

To get the term with P and T', remember that with the ideal gas law, P ~ pT (forget the constants n or k; they'll
drop out in the end). So using the product rule,

dP = Tdp + pdT,

and then divide by P, multiply by «, and use the ideal gas law. We find

dp __(dP _dT

and collecting terms can then give you Equation (11.14). Using the ideal gas law again with T and p will give you
Equation (11.15).
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