Unit 8

Density-temperature equation of state landscape

8.1 Radiation pressure

First consider one more equation of state.

- Particles are not the only source of pressure in a star. The radiation field of photons can also exert a pressure.
- Photons have momentum and can exchange that momentum with other objects, creating pressure.
- We already have an expression for the general pressure in Equation (6.5).
- With a degeneracy factor g=2 (photons have 2 spin states, or polarizations, each with the same energy at fixed frequency), chemical potential (bosons) $\mu_c=0$, E=pc, and $E_j=0$, the distribution function Equation (6.1) is

$$n(p) = \frac{2}{h^3} \frac{1}{\exp(pc/kT) - 1}.$$
(8.1)

• From Equation (6.5), we thus have

$$P_{\rm rad} = \frac{8\pi c}{3h^3} \int_0^\infty \frac{p^3}{e^{pc/kT} - 1} \, \mathrm{d}p, \tag{8.2}$$

where we made the substitution $v \equiv c$ for photons.

 \bullet The integral can be solved (Problem 8.1) to give

$$P_{\rm rad} = \frac{1}{3}aT^4, (8.3)$$

where $a = 4\sigma/c = 7.5 \times 10^{-15} \,\mathrm{erg} \,\mathrm{cm}^{-3} \,\mathrm{K}^{-4}$.

• Similarly as before, the energy density

$$u_{\rm rad} = aT^4 = 3P_{\rm rad}.$$
 (8.4)

Note the similar form to relativistic, degenerate matter.

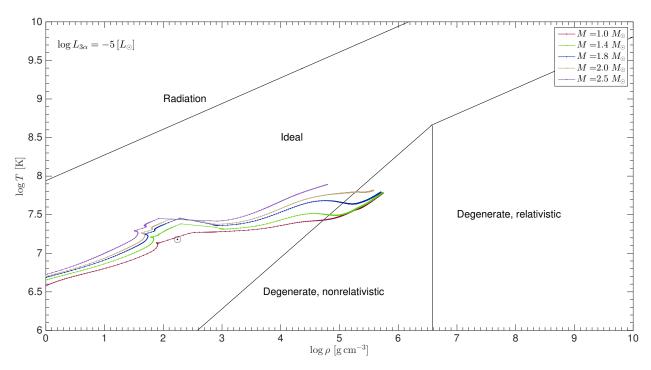


Figure 8.1: Stellar matter conditions. These boundary regimes are computed using $\mu_{\rm e}=2$ and $\mu=0.5$. A few example model tracks (central values as a funciton of time) are shown for different masses, until the point when the contribution to the luminosity by the triple- α process is 1 part in 10^5 solar luminosities, as denoted in the figure. In practice, these stars are near their respective tip of the red-giant branch. The current location of the Sun is given by its symbol. The radiation pressure boundary is computed from $P_{\rm rad}=10P_{\rm ideal}$.

PROBLEM 8.1: [10 pts]: Carry out the integral in Equation (8.2) to show that

$$a = \frac{8\pi^5}{15} \frac{k^4}{h^3 c^3}. (8.5)$$

Hint: make the substitution x = pc/kT.

8.2 Putting it all together

• Putting the previous sections together, the pressure of stellar matter through the equation of state in general is

$$P = P_{\text{ion}} + P_{\text{e}} + P_{\text{rad}}.\tag{8.6}$$

- In some cases, the electron pressure is from degenerate particles. In rare cases, the ions can become degenerate too.
- Not all of these pressure terms contribute equally to the total pressure at any given time, as you saw in Problem 7.1.
- Consider the total gas pressure of an ideal gas as

$$P_{\rm gas}^{\rm ideal} = P_{\rm ion} + P_{\rm e} = \frac{\rho k_{\rm B} T}{\mu m_{\rm p}}.$$
 (8.7)

• It is useful to compare regions where this and $P_{\rm e}^{\rm deg}$ and $P_{\rm rad}$ compete and transition to one another.

• First consider where an ideal gas transitions to a degenerate nonrelativistic one. Equating Equation (7.10) and Equation (8.7) gives

$$\frac{\rho}{\mu_{\rm e}^{5/2}} = \left(\frac{k_{\rm B}}{C\mu m_{\rm u}}\right)^{3/2} T^{3/2},\tag{8.8}$$

where C is the constant prefactor in Equation (7.10).

- For large densities or low temperatures, i.e., when $\rho T^{-3/2} > \text{const}$, the gas is dominated by degenerate pressure. This is shown by the line of a slope of 2/3 in Figure 8.1.
- When electron speeds become relativistic, Equation (7.13) becomes appropriate, and when equated with the ideal gas pressure yields

$$\frac{\rho}{\mu_{\rm e}^4} = \left(\frac{k_{\rm B}}{D\mu m_{\rm u}}\right)^3 T^3,\tag{8.9}$$

where D is the constant prefactor in Equation (7.13).

- This is shown in Figure 8.1 with the line of slope 1/3 at high temperature and density.
- In the degenerate regime, the transition from non- to relativistic is found by equating Equation (7.10) and Equation (7.13), which is independent of temperature (since these are completely degenerate systems):

$$\frac{\rho}{\mu_{\rm e}} = \left(\frac{D}{C}\right)^3. \tag{8.10}$$

This is given in the figure by the vertical line.

• Finally, we can determine where radiation pressure starts to exceed ideal gas pressure. We use Equation (8.3) to find

$$\frac{\rho}{\mu} = \frac{1}{3} \frac{a m_{\rm u}}{k_{\rm B}} T^3. \tag{8.11}$$

• In Figure 8.1 this is shown by the line at the bottom right of slope 1/3.