
Unit 7

Equation of state: Degenerate gas

7.1 Completely degenerate gas

• The ideal gas law (because of Maxwell-Boltzmann statistics) breaks down at sufficiently high densities
and/or low temperatures.

• Consider the extreme case where T → 0 at fixed density.

• From Equation (6.7), the Maxwell distribution peaks at zero momentum where all the particles want
to pile up. They want to be in the lowest energy state, which is zero.

• There’s a limit to how close fermions can come, based on the Pauli exclusion principle.

• So instead, we must use Fermi-Dirac statistics and not Maxwell-Boltzmann.

• Consider first the most interesting terms in Equation (6.1)

f(p) =
1

e(E(p)−µc)/kT + 1
, (7.1)

where we’ve taken a reference energy level Ej = 0.

• As T → 0, f goes to 1 or 0 depending on the sign of E − µc.

• The function is discontinuous at the Fermi momentum pF, or at energy EF.

• For fermions such as electrons, with spin 1/2, the degeneracy factor in Equation (6.1) g = 2.

• The chemical potential is the Fermi energy µc = EF, up to which all the quantum states are filled.
This is what is meant by “degeneracy.”

• It is convenient to introduce the dimensionless momentum x = p/mc and Fermi momentum xF =
pF/mc.

• The integration to obtain the number density of electrons is therefore

ne =
8π

h3

∫ pF

0

p2 dp = 8π

(

h

mec

)

−3 ∫ xF

0

x2 dx =
8π

3

(

h

mec

)

−3

x3
F = 5.865× 1029 x3

F cm−3. (7.2)

Note that pF ∼ n
1/3
e .

• It is common, yet confusing, to remove the subscript for Fermi and just to write

ne = 5.865× 1029 x3 cm−3. (7.3)
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• If we reintroduce the electron mean molecular weight, as in Equation (5.14), we can get this in terms
of mass density

ρ

µe
=

8πmu

3

(

h

mec

)

−3

x3
F = 9.74× 105 x3

F g cm−3. (7.4)

This is interesting in that it is a way to determine the Fermi momentum or energy if provided a value
for ρ/µe. Also note the densities of about 106, which are typical of white dwarfs.

• The electron pressure (the pressure due to degenerate electrons, not ions) from Equation (6.5) is
therefore

Pe =
8π

3

m4
ec

5

h3

∫ xF

0

x4

(1 + x2)1/2
dx = Cf(x), (7.5)

where C = πm4
ec

5/3h3 = 6.002× 1022 dyne cm−2.

• The function f(x) is

f(x) = x(2x2
− 3)(1 + x2)1/2 + 3 sinh−1 x. (7.6)

• Similarly, the internal energy density from Equation (6.6) is

ue = 8π
m4

ec
5

h3

∫ xF

0

x2
[

(1 + x2)1/2 − 1
]

dx = Cg(x), (7.7)

where C is the same as before.

• The function g(x) is

g(x) = 8x3
[

(1 + x2)1/2 − 1
]

− f(x). (7.8)

• These are very general expressions in terms of x for the pressure and energy density.

IN CLASS WORK

Show that x discriminates between the nonrelativistic regime x ≪ 1 and the relativistic regime
x ≫ 1. Use Equation (6.3) and Equation (6.4).

Answer: Since x = p/mec, we need to know what the momentum is. It’s not simply p = mv. We

can compute the velocity and then the momentum.

v =
∂E

∂p
=

p/m
(

1 + p2

m2c2

)1/2

Solving for p gives

p =
mv

√

1− v2/c2
,

which is expected. Therefore,

x =
v/c

√

1− v2/c2
.

Another useful form is to solve for the velocity ratio in terms of x:

v2

c2
=

x2

1 + x2
.

In any case, for electron velocities near the speed of light, x becomes very large.
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• Let us first consider the case for nonrelativistic electrons where x ≪ 1. In this limit, to first order

f(x) ≈
8

5
x5,

g(x) ≈
12

5
x5.

• Using Equation (7.5) we thus have

Pe =
8πm4

ec
5

15h3
x5. (7.9)

• Relating this through the density in Equation (7.2) to remove x, and then using the electron mean
molecular weight in Equation (5.14), we arrive at the final expression

Pe = 1.0036× 1013
(

ρ

µe

)5/3

dyne cm−2. (7.10)

This is the equation of state for a fully degenerate nonrelativistic electron gas.

• Carrying out the same exercise for the internal energy, we find

ue =
3

2
Pe. (7.11)

• Thus, the equation of state for this nonrelativistic gas has characteristics of an ideal monatomic gas
(see Equation (6.16)).

• Let us now consider the case for relativistic electrons where x ≫ 1. In this limit, to first order

f(x) ≈ 2x4,

g(x) ≈ 6x4.

• Now, the pressure is

Pe =
2πm4

ec
5

3h3
x4, (7.12)

which after plugging in constants and introducing ne and ρ gives

Pe = 1.243× 1015
(

ρ

µe

)4/3

dyne cm−2. (7.13)

• Similarly for the energy we have

ue = 3Pe. (7.14)

• The transition from non- to relativistic states is smooth in x. Note the exponents on the density, which
we will come back to these later (polytropes).

PROBLEM 7.1: [10 pts]: Find the ratio of the electron degeneracy pressure to the electron ideal gas pressure
in the center of the (current) Sun (assuming the center could be degenerate in electrons). Let T = 15×106 K,
ρ = 150 g cm−3, and abundances X = 0.35, Z = 0.02. Prove that you are using the correct expression for the
electron degeneracy pressure.
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7.2 Partially degenerate gas

• The previous section considered an ideal zero-temperature gas. But if the temperature is finite, then
the Fermi-Dirac function is not a simple step function and needs to be evaluated numerically.

• When this is done, the temperature dependence of the equation of state is realized.

• The typical expressions are just expansions of the Fermi function in powers of T .

• Qualitatively though, as temperature is increased some amount, only the electrons near the Fermi
energy have the freedom to move to higher states and smear out the step function. Only if a temperature
equivalent to about the Fermi energy EF = kBT is achieved can particles deep within the Fermi sea
find unoccupied levels at higher energies. If that’s the case, the gas becomes more like a classical one.

• So the transition from degeneracy to non degeneracy can roughly be considered to occur when the
temperature of the gas is near the Fermi energy.

• We will not spend more time on this right now, but keep in mind that these states of matter are not
typically homogeneous, but rather a mixture.
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