Unit 6

Equation of state: Ideal gas

6.1 Preliminaries

- First we recall the distribution function and do a little thermodynamics with them.
- A distribution function simply measures the number density of a species in 6D space of position and momentum.
- If we know this function for a gas, all thermodynamic quantities can be derived (pressure, temperature, density, composition).
- Equations of state relate pressure, temperature, and number of particles.
- An ideal gas is one in which the particles don't interact (except through elastic collisions). They can exchange energy though, but have to conserve it.
- This approximation breaks down when matter is degenerate, and particles begin to "sense" each other and interact in quantum fashion or otherwise.
- An important thermodynamical quantity is the chemical potential μ_c for each species, that was introduced earlier. For classical particles, $\mu_c \to -\infty$, for degenerate fermions $\mu_c \to \epsilon_F$, for bosons $\mu_c = 0$.
- Chemical changes in the gas use the chemical potential to monitor particle numbers, and thus to achieve a chemical equilibrium (in addition to thermodynamic equilibrium).
- In thermodynamic equilibrium, statistical mechanics tells us the relationship between the number density (of phase space, ie, number per unit volume per unit momentum: $d^3r d^3p$) of a species

$$n(p) = \frac{1}{h^3} \sum_{j} \frac{g_j}{\exp\{[E_j + E(p) - \mu_c] / k_B T\} \pm 1},$$
(6.1)

where

- j are the possible energy states of the species (like energy levels in an ion), and E_j is the energy of that level
- -E(p) is the kinetic energy
- $-g_j$ is the degeneracy of state j (number of states with same energy)
- $-\pm$ is either for fermions or bosons, respectively.

Note that the units of Planck's constant are length times momentum (remember the uncertainty principle). We will come back to this frequently.

• To find the number density (particles cm⁻³) we integrate $n(p) d^3p$ over momentum space (assumed to be symmetric)

$$n = \int_{p} 4\pi p^2 n(p) \,\mathrm{d}p. \tag{6.2}$$

 \bullet To remain completely general, the kinetic energy of a particle of rest mass m is

$$E(p) = (p^{2}c^{2} + m^{2}c^{4})^{1/2} - mc^{2}.$$
(6.3)

IN CLASS WORK

What does this expression reduce to in the nonrelativistic limit?

Answer: In this limit, we note that $pc \ll mc^2$, so one can expand the term in the square root:

$$E(p) = mc^{2} \left(1 + \frac{p^{2}c^{2}}{m^{2}c^{4}}\right)^{1/2} - mc^{2},$$

$$\approx mc^{2} \left(1 + \frac{1}{2} \frac{p^{2}c^{2}}{m^{2}c^{4}}\right) - mc^{2},$$

$$\approx \frac{p^{2}}{2m},$$

which is the expression we'd expect.

- Now we can define three general quantities:
 - 1. Velocity:

$$v = \frac{\partial E}{\partial p}. ag{6.4}$$

2. Pressure:

$$P = \int_{\mathbf{p}} n(\mathbf{p}) \mathbf{v} \cdot \mathbf{p} \, \mathrm{d}^3 \mathbf{p} = \frac{1}{3} \int_{\mathbf{p}} n(\mathbf{p}) v \, p \, 4\pi p^2 \, \mathrm{d}\mathbf{p}, \tag{6.5}$$

where the last equality comes from assuming isotropy of pressure.

3. Internal energy density (energy per unit volume):

$$u = \int_{p} n(p)E(p)4\pi p^{2} dp.$$
 (6.6)

• These general considerations can soon be applied to specific cases.

6.2 Maxwell-Boltzmann statistics

- The relation of Equation (6.1) to classical probability functions is found through Equation (6.11) and Equation (6.12). These tell us the fraction of particles within an infinitesimal element of 3-dimensional space (velocity, energy, or momentum space).
- In momentum space

$$f(p) dp = \frac{4\pi}{(2\pi m k_{\rm B} T)^{3/2}} e^{-p^2/2mkT} p^2 dp.$$
 (6.7)

• In energy space

$$f(E) dE = \frac{2}{\sqrt{\pi} (k_{\rm B} T)^{3/2}} e^{-E/kT} \sqrt{E} dE.$$
 (6.8)

• In velocity space

$$f(v) dv = 4\pi \left(\frac{m}{2\pi k_{\rm B}T}\right)^{3/2} e^{-mv^2/2kT} v^2 dv.$$
 (6.9)

• These are normalized such that the integrals of each quantity over velocity, momentum, or energy are equal to 1.

6.3 Ideal monatomic gas

- As a first demonstration, we consider a gas of single species nonrelativistic particles. We will be using Equation (6.1).
- Their energy is $E = p^2/2m$. Consider one energy level $E_i = E_0$.
- For this system, the chemical potential goes to negative infinity (as we'll see), so the exponential term is large, and the ± 1 term can be safely ignored.
- The number density of particles in any given momentum state p is

$$n(p) = \frac{g}{h^3} e^{-p^2/2mkT} e^{-E_0/kT} e^{\mu_c/kT}, \tag{6.10}$$

and so the total number density over all momenta is

$$n = \frac{4\pi g}{h^3} \int_0^\infty p^2 e^{-p^2/2mkT} e^{-E_0/kT} e^{\mu_c/kT} dp.$$
 (6.11)

• The integral is straightforward and gives an expression

$$n = \frac{(2\pi m k_{\rm B} T)^{3/2} g}{h^3} e^{-E_0/kT} e^{\mu_{\rm c}/kT}.$$
 (6.12)

• Another way to write this is

$$e^{\mu_{\rm c}/kT} = \frac{nh^3}{g(2\pi mk_{\rm B}T)^{3/2}} e^{E_0/kT}.$$
 (6.13)

Since we are assuming that the term on the left is small (since $\mu_c \ll -1$), then the right hand side must also be small. Specifically, $nT^{-3/2}$ cannot be too large. If that were the case, then we would not be able to ignore the ± 1 term in the distribution function.

• Returning to the definition of gas pressure in Equation (6.5), we can compute the integral to find

$$P = g \frac{4\pi}{h^3} \frac{\pi^{1/2}}{8m} (2mk_{\rm B}T)^{5/2} e^{-E_0/kT} e^{\mu_{\rm c}/kT}.$$
 (6.14)

• Using the generalized number density from Equation (6.12), this gives what you thought it would

$$P = nk_{\rm B}T \,[\text{dyne cm}^{-2}]. \tag{6.15}$$

This is the equation of state for an ideal gas.

• Similarly we can compute the internal energy density from Equation (6.6)

$$u = \frac{3}{2}nk_{\rm B}T = \frac{3}{2}P; [\text{erg cm}^{-3}].$$
 (6.16)

• Note that the units of pressure and internal energy density are the same.

• From what we saw before with the mean molecular weight, we can also express these quantities as

$$n = \frac{\rho}{\mu m_{\rm u}},\tag{6.17}$$

$$n = \frac{\rho}{\mu m_{\rm u}}, \qquad (6.17)$$

$$P = \frac{\rho k_{\rm B} T}{\mu m_{\rm u}}, \qquad (6.18)$$

$$P = \frac{\rho RT}{\mu},\tag{6.19}$$

where μ is the mean molecular weight, and $R = k_{\rm B}/m_{\rm u}$ is the ideal gas constant $R = 8.31 \times$ $10^7 \,\mathrm{erg}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$.

EXAMPLE PROBLEM 6.1: Instead of arriving at Equation (6.16) through the energy formulation, one can use velocity to show that the average internal kinetic energy per particle is $3/2k_{\rm B}T$. Hint: Start with the Maxwellian distribution for a classical gas in velocity (Equation (6.9)) and then compute the mean square speed $\langle v^2 \rangle$. The integration limits of v should be from zero to infinity.

Answer: The mean square speed can be written as

$$\langle v^2 \rangle = \int_0^\infty v^2 f(v) dv,$$

where f(v) is the Maxwell distribution. One can (and should) use a table of integrals to find that

$$\int_0^\infty x^n e^{-ax^2} dx = \frac{(2k-1)!!}{2^{k+1}a^k} \left(\frac{\pi}{a}\right)^{1/2},$$

where n=2k and in our case $a=m/2k_{\rm B}T>0$. Note the double factorial, which, for k=2, is $3\times 1=3$. The result is

$$\langle v^2 \rangle = 4\pi \left(\frac{m}{2\pi k_{\rm B} T} \right)^{3/2} \cdot \frac{3}{8} \frac{\pi^{1/2}}{a^{5/2}},$$

and after cancellation becomes

$$\langle v^2 \rangle = \frac{3k_{\rm B}T}{m}.$$

The kinetic energy is then $1/2m\langle v^2\rangle=3/2k_{\rm B}T$, precisely what we set out to prove.