
Unit 6

Equation of state: Ideal gas

6.1 Preliminaries

• First we recall the distribution function and do a little thermodynamics with them.

• A distribution function simply measures the number density of a species in 6D space of position and
momentum.

• If we know this function for a gas, all thermodynamic quantities can be derived (pressure, temperature,
density, composition).

• Equations of state relate pressure, temperature, and number of particles.

• An ideal gas is one in which the particles don’t interact (except through elastic collisions). They can
exchange energy though, but have to conserve it.

• This approximation breaks down when matter is degenerate, and particles begin to “sense” each other
and interact in quantum fashion or otherwise.

• An important thermodynamical quantity is the chemical potential µc for each species, that was in-
troduced earlier. For classical particles, µc → −∞, for degenerate fermions µc → ǫF, for bosons
µc = 0.

• Chemical changes in the gas use the chemical potential to monitor particle numbers, and thus to
achieve a chemical equilibrium (in addition to thermodynamic equilibrium).

• In thermodynamic equilibrium, statistical mechanics tells us the relationship between the number
density (of phase space, ie, number per unit volume per unit momentum: d3r d3p) of a species

n(p) =
1

h3

∑

j

gj
exp {[Ej + E(p)− µc] /kBT} ± 1

, (6.1)

where

– j are the possible energy states of the species (like energy levels in an ion), and Ej is the energy
of that level

– E(p) is the kinetic energy

– gj is the degeneracy of state j (number of states with same energy)

– ± is either for fermions or bosons, respectively.

Note that the units of Planck’s constant are length times momentum (remember the uncertainty
principle). We will come back to this frequently.
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• To find the number density (particles cm−3) we integrate n(p) d3p over momentum space (assumed to
be symmetric)

n =

∫

p

4πp2n(p) dp. (6.2)

• To remain completely general, the kinetic energy of a particle of rest mass m is

E(p) = (p2c2 +m2c4)1/2 −mc2. (6.3)

IN CLASS WORK

What does this expression reduce to in the nonrelativistic limit?

Answer: In this limit, we note that pc ≪ mc2, so one can expand the term in the square root:

E(p) = mc2
(

1 +
p2c2

m2c4

)1/2

−mc2,

≈ mc2
(

1 +
1

2

p2c2

m2c4

)

−mc2,

≈ p2

2m
,

which is the expression we’d expect.

• Now we can define three general quantities:

1. Velocity:

v =
∂E

∂p
. (6.4)

2. Pressure:

P =

∫

p

n(p)v · p d3p =
1

3

∫

p

n(p)v p 4πp2 dp, (6.5)

where the last equality comes from assuming isotropy of pressure.

3. Internal energy density (energy per unit volume):

u =

∫

p

n(p)E(p)4πp2 dp. (6.6)

• These general considerations can soon be applied to specific cases.

6.2 Maxwell-Boltzmann statistics

• The relation of Equation (6.1) to classical probability functions is found through Equation (6.11) and
Equation (6.12). These tell us the fraction of particles within an infinitesimal element of 3-dimensional
space (velocity, energy, or momentum space).

• In momentum space

f(p) dp =
4π

(2πmkBT )3/2
e−p2/2mkT p2 dp. (6.7)

• In energy space

f(E) dE =
2√

π(kBT )3/2
e−E/kT

√
E dE. (6.8)



6.3. IDEAL MONATOMIC GAS 39

• In velocity space

f(v) dv = 4π

(

m

2πkBT

)3/2

e−mv2/2kT v2 dv. (6.9)

• These are normalized such that the integrals of each quantity over velocity, momentum, or energy are
equal to 1.

6.3 Ideal monatomic gas

• As a first demonstration, we consider a gas of single species nonrelativistic particles. We will be using
Equation (6.1).

• Their energy is E = p2/2m. Consider one energy level Ej = E0.

• For this system, the chemical potential goes to negative infinity (as we’ll see), so the exponential term
is large, and the ±1 term can be safely ignored.

• The number density of particles in any given momentum state p is

n(p) =
g

h3
e−p2/2mkT e−E0/kT eµc/kT , (6.10)

and so the total number density over all momenta is

n =
4πg

h3

∫

∞

0

p2e−p2/2mkT e−E0/kT eµc/kT dp. (6.11)

• The integral is straightforward and gives an expression

n =
(2πmkBT )

3/2g

h3
e−E0/kT eµc/kT . (6.12)

• Another way to write this is

eµc/kT =
nh3

g(2πmkBT )3/2
eE0/kT . (6.13)

Since we are assuming that the term on the left is small (since µc ≪ −1), then the right hand side
must also be small. Specifically, nT−3/2 cannot be too large. If that were the case, then we would not
be able to ignore the ±1 term in the distribution function.

• Returning to the definition of gas pressure in Equation (6.5), we can compute the integral to find

P = g
4π

h3

π1/2

8m
(2mkBT )

5/2e−E0/kT eµc/kT . (6.14)

• Using the generalized number density from Equation (6.12), this gives what you thought it would

P = nkBT [dyne cm−2]. (6.15)

This is the equation of state for an ideal gas.

• Similarly we can compute the internal energy density from Equation (6.6)

u =
3

2
nkBT =

3

2
P ; [erg cm−3]. (6.16)

• Note that the units of pressure and internal energy density are the same.
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• From what we saw before with the mean molecular weight, we can also express these quantities as

n =
ρ

µmu

, (6.17)

P =
ρkBT

µmu

, (6.18)

P =
ρRT

µ
, (6.19)

where µ is the mean molecular weight, and R = kB/mu is the ideal gas constant R = 8.31 ×
107 ergK−1 mol−1.

EXAMPLE PROBLEM 6.1: Instead of arriving at Equation (6.16) through the energy formulation, one can
use velocity to show that the average internal kinetic energy per particle is 3/2kBT . Hint: Start with the
Maxwellian distribution for a classical gas in velocity (Equation (6.9)) and then compute the mean square
speed 〈v2〉. The integration limits of v should be from zero to infinity.

Answer: The mean square speed can be written as

〈v2〉 =

∫

∞

0

v2f(v)dv,

where f(v) is the Maxwell distribution. One can (and should) use a table of integrals to find that

∫

∞

0

xne−ax2

dx =
(2k − 1)!!

2k+1ak

(π

a

)1/2

,

where n = 2k and in our case a = m/2kBT > 0. Note the double factorial, which, for k = 2, is 3× 1 = 3. The
result is

〈v2〉 = 4π

(

m

2πkBT

)3/2

·
3

8

π1/2

a5/2
,

and after cancellation becomes

〈v2〉 =
3kBT

m
.

The kinetic energy is then 1/2m〈v2〉 = 3/2kBT , precisely what we set out to prove.
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