Unit 4

Distribution functions

In Unit 6 we will start to derive equations of state of stellar matter. To do so from first principles, we need
to know how, in general, particles are distributed as a function of momentum (or energy). This requires
some basic statistical mechanics.

Statistical mechanics deals with the occupation of energy states when a system is excited. The fundamental
assumption of statistical mechanics is that, in thermal equilibium, every distinct state with the same total
energy is occupied with equal probability. Temperature is simply a measure of the total energy of a system
in thermal equilibium. The only change from classical statistical mechanics to quantum mechanics has to
do with how we count distinct states, which depends on whether the particles involved are distinguishable,
identical fermions, or identical bosons.

4.1 An example

e Consider 3 non-interacting particles of equal mass in some potential.

e The total energy of the system is 243 (with some arbitrary energy units). This means that the particles
occupy some energy levels n; such that, using a simple and arbitrary energy rule, we have

Brotar = »_myi® = 243. (4.1)
i=1

A one-dimensional square well, for example, has a dispersion relation like this one. There would be
prefactors before the summation symbol to give the right units of energy; for simplicity, ignore such
terms.

e Consider distinguishable (classical) particles. There are 13 unique ways of distributing 3 particles into
various energy levels to get a total energy of 243.

— We can have all 3 particles in the 9th state: ng = 3. There is only 1 way of doing this.
—n1 =1, ny;; =2. (3 ways)
—ng =2, ni5 = 1. (3 ways)

— ns =n7 =ny3 = 1. (6 ways)
e Quantum statistics says, for large N, that all states with the same N and same FEita) are equally likely.

e Therefore, in thermal equilibrium, the most probable configuration is the one that can be achieved in
the largest number of ways. The last state is this case. We’ll come back to this.

e Now consider fermions, which are indistinguishable, and cannot occupy the same state.
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30 UNIT 4. DISTRIBUTION FUNCTIONS

There is only one possibility here: n5 = ny =ni3 = 1.

Finally, consider bosons, which are indistinguishable. There are 3 distinct states:

— ng = 3. (1 way)
—nzg =2, ni5 = 1. (1 way)

— Ny = N7 = N13 = 1. (1 Way)

4.2 Partition function

e Again consider N particles with the same masses. There are energy states E; with degeneracies g;
(distinct states with same energy E;). We distribute the N particles such that there are Ny particles
with energy F4, No particles with energy Fs, etc. We want to know how many different ways we can
do this?

e We now define Q(ny,ns, ng, . ..) to be the number of microscopically distinguishable arrangements that
lead to the same macroscopic distribution.

e It is sometimes known as a partition function, or probability distribution function, or canonical en-
semble, etc.

e (learly, (Q depends strongly on the type of particle we are considering, as the 3 cases below show
(without derivation).

4.2.1 Distinguishable particles

In this case,

Q:N!H%

i=1

To prove this, we go back to the previous illustration:

Q(ng = 3) = 3! (S) =1. (4.2)
Q(ns =2,ny5 = 1) = 3! (j) (1;) =3. (4.3)

o= tr =t = =3 () (4) (5) = ”

This confirms our earlier counting.

4.2.2 Identical fermions

In this case,

T gi!
@=1lme =

1! 1! 1!
Qns=1,n7=1n3=1) = <1'0'> (1'0'> (1'0') =1. (4.5)

So,
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4.2.3 Identical bosons

In this case,

4.3 Derivation

In thermal equilibirum, each energy state with some occupying number of particles is equally likely. The
most probable configuration is one that can be obtained with the largest number of different ways, such that
Q(n;) is maximum. The only constraints in this problem are that the total number of particles in each
state add up to the total, or
Z n; = N,
i

and that the total energy is maintained as

Z n B = Eyoy.

To solve such a problem we can introduce a new function and Lagrange multipliers that help maintain the
constraints. Instead of maximizing @, it’s more convenient to consider In (). So we want to maximize

G=nQ+a N_Zni +5 Etot_zniEi

Then to find the maximum we compute dG/9n; = 0. Also, regarding the Lagrange multipliers, 0G/0a = 0
and 0G /98 = 0 simply reproduce the constraints.

The quantity @ needs to be considered for the 3 different types of particles that we’ve discussed.

It will also be helpful to utilize Stirling’s approximation:
In(z!) ~ zlnx — x, (4.6)

which holds when x > 1.

1. Distinguishable particles. Do this in detail. Using our @ in this case we have

N — Z n; E— Z n1E7

N — Z n; E - anEz
i i

= lnN!—i—Znilngi—Zlnn!—i—a N—Zni E—ZniEi

= NlnN—N—|—Znilngi —Znilnni—FZm—!—a N—an‘

G = lnN!JrlnH%Jra +5
i=1

- lnN!—l—Zlnii_'—l—a 8
i v

+ 5

+ 68

E - Zn’LEL

| I

Note E = Eiut.



32 UNIT 4. DISTRIBUTION FUNCTIONS

Now taking the partial derivative

oG n;
a—nj = lngj—lnnj—n—;—l—l—a—ﬁEj:O
= Ingj—Inn; —a-pBE; =0
m a+ BE;

nj
9 _ e TBE;
nj
n; = gje_o‘_BEf.

This is the result we are looking for.

2. Fermions. Following the same procedure, we find

A exp(la+ BE;) +1

3. Bosons. Again, the same procedure yields

n; = 97 .
7 exp(a+ BE;) —1

To determine what o and 3 are, one needs to plug the n; into the constraints and consider some specific
total particle number N and energy system E. One then finds that

_
¢ T kT
1
6 - kiBiT,

where p is the chemical potential and kg is Boltzmann’s constant.
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