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Stellar Structure
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Unit 1

Equilibrium and time scales

1.1 Energy equilibrium

• Consider a thin layer at location r and of width dr in the nuclear burning region of a star. For energy
equilibrium, the net flow of energy crossing this region’s boundaries should be equal to the energy
generation in the region.

• Let ε be the energy generated per gram of material per second, so the energy generated per second in
(r, dr) is εdm.

• Consider the luminosity (energy per second) L that carries energy away. In the layer, there should
be a balance between energy gains and energy losses (plus and minus denotes outgoing from center or
toward center, respectively):

εdm + L+
r + L−

r+dr = L−

r + L+
r+dr (1.1)

εdm = [L+
r+dr − L−

r+dr]− [L+
r − L−

r ] = Lr+dr − Lr (1.2)

εdm/dr = dL/dr, (1.3)

by dividing by dr and letting it go to zero (derivative).

• This standard relation will appear many times:

ρ =
dm

dV
, (1.4)

or,
dm = 4πr2ρ dr (1.5)

• If ρ ε is the energy produced per second in each cm3 of material, then by unit analysis the energy
generated per second in (r, dr) is also given by

εdm = (4πr2dr)ρε. (1.6)

• Therefore, we can finally state
dL

dr
= 4πr2ρ ε. (1.7)

• Sometimes we will use m instead of r as the independent coordinate, and so

dL

dm
= ε. (1.8)
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8 UNIT 1. EQUILIBRIUM AND TIME SCALES

• This is one of the main equations of stellar structure.

• Note that in regions where ε = 0, the luminosity is constant.

• The properties of ε, its temperature dependence and derivation, are discussed in Unit 3.

• See Problem 1.1.

1.2 Local thermodynamic equilibrium

• Collisions between particles in a gas and/or radiation allow equilibrium to occur if the distance particles
travel and the time between collisions is small compared to macroscopic length and time scales.

• If this condition is met by radiation, it is known as blackbody radiation and the gas and radiation field
are at the same temperature locally.

• This is known as local thermodynamic equilibrium (LTE).

• Specifically, the mean free path of photons is given by

ℓ =
1

κρ
, (1.9)

where κ is the opacity and ρ is density.

• We’ll see later that for a fully ionized gas that electron scattering gives κ = 0.4 cm2 g−1.

• Even for an average stellar density of ρ = 1.4 g cm−3, the mean free path of photons is about 1 cm.
Lots of collisions.

• In stellar interiors this is almost always the case. Above stellar photospheres this assumption breaks
down.

• For example, the radiation leaving the Sun’s surface is at about 6,000K. However, the gas (electron)
temperature of the corona, through which this radiation passes, can be over 1,000,000K. The matter
and radiation have not equilibrated. This is actually an outstanding problem.

• On the other end, the 6000K radiation from the Sun passes through Earth’s 300K atmosphere also
without (thankfully) equilibrating.

• In any case, assuming LTE allows us to calculate the interior structure of a star and all the thermo-
dynamic properties in terms of temperature, density, and composition. This is done at each radial
location, and as a function of time.

1.3 Are stars a one-fluid plasma?

• We know stars are mostly ionized. Shouldn’t we treat the positive and negative charges as separately?

• If collisions are sufficiently frequent and Maxwellian and have times scales much less than other time
scales of interest, then we can use a one-fluid model and generally ignore charge separation.

• The Debye length is the length over which an appreciable electric field can arise. It is roughly a measure
of the thermal energy/electric potential energy ratio. If this length is short with respect to the plasma,
we can assume charge neutrality.

λD =

√

ǫ0kBTe

neq2e
≈ 6.9

(

Te

ne

)1/2

× 10 m (1.10)
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• In the core of the Sun, ne = 1032 m−3 and Te = 107K, so that λD ≈ 10−11 m. In the photosphere,
ne = 1011 m−3 and Te = 5 × 103 K, so that λD ≈ 1.5 × 10−3 m. For the corona, we may find that
λD ≈ 10 m.

• So the mean free path of ions (electrons) are much smaller than the scale of the variations of phys-
ical quantities. Therefore we can treat most regions of stars as a one-fluid plasma system and use
hydrodynamics. In coronae, however, it may be necessary to resort to plasma physics where many
approximations are no longer valid.

1.4 Simple time scales of stars

While stars are for the most part static or quasistatic, and in equilibrium, there are time scales over which
change may occur on a global scale. We can consider some quantity, say φ, and its rate of change φ̇ = dφ/dt.
Any relevant time scale is thus φ/φ̇.

1.4.1 Dynamical timescale

• Let’s first consider the smallest (and most observable) timescale tdyn.

• Consider a change in the fundamental dimension of the star, its radius φ = R, may be possible to
examine.

• Since gravity is the binding force, the velocity in a gravitational field is the escape velocity φ̇ =
(2GM/R)−1/2.

• Then (neglecting factors of order unity),

tdyn =

(

R3

GM

)1/2

. (1.11)

Note that in terms of the mean density of a star tdyn ≈ (Gρ)−1/2.

• In terms of solar values, we find

tdyn ≈ 30min

(

R

R⊙

)3/2 (
M

M⊙

)−1/2

. (1.12)

So since we don’t see large-scale changes on such time scales, we know there must be some balance of
forces in the Sun. See Problem 1.2.

• Another way of thinking about this is to start with

g =
GM

R2
. (1.13)

• The time for a particle to fall under gravity is ℓ = 1/2gt2 → t =
√

2ℓ/g. The time scale therefore for
a particle to fall, say, a distance ℓ = R/2 in a star is

tdyn =

(

R3

GM

)1/2

, (1.14)

which reproduces Eq. (1.11).

• Dynamical processes in stars that help it adjust out of hydrostatic equilibrium typically occur over
dynamical timescales, such as oscillations and even supernovae.
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1.4.2 Thermal timescale

• There exist thermal processes that affect the internal energy of a star, which we’ll denote as φ = U .

• As we’ll see from the Virial Theorem, U ≈ GM2/R.

• The energy changes due to radiation, whose rate of change is the luminosity φ̇ = L.

• If we consider that losing its gravitational potential energy is the only real source of energy, then we
can calculate the time a star can radiate at a given luminosity. This is the Kelvin-Helmholtz timescale
and can be shown to be:

tKH ≈ 30Myr

(

M

M⊙

)2 (
R

R⊙

)−1 (
L

L⊙

)−1

. (1.15)

• See Problem 1.3

• If a star has no internal energy sources it can generate energy and radiate by contracting. You see this
in Computer Problem 1.1.

• In Lord Kelvin’s time, this was a problem because we assumed the Sun would be older than this value,
since we by then knew the Earth to be at least several billion years old. However, we still didn’t know
about nuclear energy sources.

1.4.3 Nuclear timescale

• Unit 3 discusses the fusion of hydrogen into helium, where the energy released can be estimated as
∆E = ∆mc2. We know about 0.7% of the mass is lost.

• If this fusion process only takes place in the inner 10% of the Sun, the energy available is about
7× 10−4Mc2 = φ.

• The rate of change of the energy is again the luminosity φ̇ = L.

• The timescale is

tnuc = 7× 10−4Mc2

L
(1.16)

= 1010 yr

(

M

M⊙

)(

L

L⊙

)−1

. (1.17)

We know that luminosity is a strong function of mass, so massive stars burn out their energy very
quickly.

1.5 Problems

PROBLEM 1.1: [5 pts]: Verify the statement that where ε = 0 the luminosity is constant using MESA, by
showing an appropriate/convincing plot from a model.

PROBLEM 1.2: [5 pts]: Derive equation (1.12) by plugging in the constants. Qualitatively, how would the
dynamical times scale for a white dwarf star compare to the Sun? A supergiant star?
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PROBLEM 1.3: [5 pts]: Derive equation (1.15).

COMPUTER PROBLEM 1.1: [25 pts]: Here you will look at the effects of “turning off” nuclear reactions
at the main sequence to see how stellar evolution changes. MESA allows one full control of nuclear energy
generation. We will explore how this changes the star right after the time it formed and is getting to the
main sequence.
Submit your answers to the questions below with figures. You may also prepare a document with all answers
and figures and upload into Canvas.

What to do

1. Copy the WORK DIR to wherever you will be running MESA, rename it to something sensible.

2. Edit the inlist project file. In &star job, make sure pgstar flag=.true. and we don’t need to
create a pre-main sequence track yet, so you can add
create pre main sequence model=.false. In the &controls section, we want the initial mass=1.0.
Run the model until about 10 billion years, so set max age=1d10. Most importantly, for this first run,
turn off the nuclear reaction rates by setting eps nuc factor=0 and dxdt nuc factor=0.

3. You shouldn’t need to run more than about 1000 models (timesteps) to reach that age based on the
default dt. All the data gets saved in LOGS/.

4. Now copy a new working directory and maybe copy the inlist you just used into it and change the follow-
ing: Turn on the reactions by setting that variable to 1. We need a stopping criterion, because 10 billion
years would take us to the terminal age main sequence, and so we’ll use the onset of hyrdrogen burning
and set an abundance criterion. So in &controls add xa central lower limit species(1)=’h1’ and
then xa central lower limit(1)=0.69 (the default initial H abundance is 0.7). So right after a little
bit of central hydrogen is burned (depleted), the simulation will stop.

Questions

1. How old was the star with nuclear burning when the hydrogen abundance dropped below 0.7? Is that
reasonable?

2. Plot a proper HR diagram with the “tracks” of both stars on it (luminosity vs effective temperature,
logarithmically). Try to give some indication of age on the plot. You may have to “zoom” in to the
appropriate area with a second plot.

3. Describe the two tracks qualitatively.

4. How long does it roughly take for the model with no nuclear burning to get to its highest Teff . How
does that number compare with what is predicted from Equation (1.15). Please show your work.

5. Explain why or how the star with no nuclear burning gets so much hotter than the star with nuclear
burning. What is physically happening? Then show a plot that should confirm your explanation that
uses interior parameters. What happens for the star with no burning at later times, explain its track
on the HR diagram? (Look around for the appropriate quantities to plot in the evolution variables, it’s
up to you).

What You Should Know How To Do From This Chapter

• Know how to put expressions into convenient forms with the proper coefficient as in the timescale
equations.
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