
Introduction to Linux Scripting

Albert Lund

CHPC User Services

Overview

• What is scripting?

• Compiling mini-excercise

• Basic bash/tcsh scripting exercises

Slides: home.chpc.utah.edu/~u0403692/IntroScripting.pdf

vi Refresher/Exercise

• A few commands will get you started:
– Press 'i' for insert! (Insert mode, Replace mode)

– Press 'Esc' to get back to command mode!

– :w - 'write'

– :wq! - 'write and quit'

– :q! - 'quit without saving (good for mistakes)

– Press 'u' to undo in command mode

• Exercise: write something in vi and save it!
– Try it with 'vim' too

Why script?

Scripting is a timesaver

The real question: When should you script?

Scenarios for scripting

• Using the batch system at CHPC

• Automating pre- and post- processing of
datasets

• Performing lots of repeated, menial, soul
draining tasks efficiently and quickly

How long should you spend writing a script?

http://xkcd.com/1205/

Task time saver calculator: http://c.albert-thompson.com/xkcd/

Don't script when it doesn't save you time!

http://c.albert-thompson.com/xkcd/
http://c.albert-thompson.com/xkcd/
http://c.albert-thompson.com/xkcd/

What to script in?

• Most scripting needs can be covered by bash
or tcsh.

• If you have more complicated analyses to
perform, then you should consider something
more advanced (like python* or matlab).

• If your workload is very computation heavy,
you should be considering an application
written in C/C++ or Fortran (not scripting).

*CHPC will hold a workshop in the fall on Python

bash vs tcsh

• Syntactic differences are significant (and quirky)
• Some programs do not support different shells
• Very easy to switch between shells
• You can write shell scripts in any language

regardless of your default shell.

WHILE LEARNING TO SCRIPT,
PICK ONE AND STICK WITH IT.

How to change your default shell on
CHPC systems

• You can see what your default shell is using “echo
$SHELL” when logged into CHPC systems.

• To change your default shell: go to chpc.utah.edu, click
“Sign In” in the upper right, and login with your U of U
credentials. You will be presented with your profile,
which will have a link “Edit Account Settings”. A new
dialogue will show, and you will see an option to
change shell. Change it to whatever you want, and save
it. Changes will go through in about 15 minutes.

• (Also can be used to change your email on record,
please do this if you change email addresses.)

Mini-Exercise: Compiling

• Download and compile numbertools:

 wget chpc.utah.edu/~u0403692/numbertools.tar.gz

 tar -xzf numbertools.tar.gz

 cd numbertools/

 make all

• Try running each of the programs:
 square 4.0 - area of a square with sides 4.0

 circle 4.0 - area of a circle with radius 4.0

 prime <n> - determines if an integer <n> is prime

 randgen <n> - generates <n> random integers (up to 10^6)

What is a script?

• A script is a set of linux commands condensed
into a single text file.

• When a script is executed, the commands in
the script are executed sequentially, as if they
were being typed into the command line.

• Commands are separated by a carriage return
(enter key) or a semicolon (;).

Scripting Basics - # and #!

• # is the character that starts a comment in
many, many languages (many).
– Comments can still do stuff (#!, #SLURM)

• #!/bin/bash --or-- #!/bin/tcsh can be used to
indicate what program should run the script
– you can put any program (/path/program), but the

script language should match the program,
otherwise weird things will happen

– use “chmod u+x script” to enable the execute bit
on a script

Setting and Using Variables

#!/bin/bash

#set a variable (no spaces!)

VAR="hello bash!"

#print the variable

echo $VAR

#make it permanent

export VAR2="string"

echo $VAR2

#remove VAR2

unset VAR2

#!/bin/tcsh

#set a variable
set VAR = "hello tcsh!"

#print the variable

echo $VAR

#make it permanent (no =)

setenv VAR2 "string"

echo $VAR2

#remove VAR2

unset VAR2

Be careful what you export! Don’t overwrite something important!

Mini Exercise: Echo command

• The echo command prints a string or variable
to the command line:

– echo "Hello World" writes Hello World to standard
output

– bash> HELLO="hello world"; echo $HELLO

– tcsh> set HELLO="hello world"; echo $HELLO

– beware the difference between double and single
quotes! (variables do not expand in single quotes)

Exercise 1

- Write a script from scratch where you pick a number, assign it to a
variable, and then run square, circle, and prime on it.

- Run the script from a different directory than the numbertools
directory. Set a variable to the path of the numbertools directory
and use that to run each program (e.g., $BINDIR/square)

- Use the echo command to the script output (so that you know what
output came from which program)

Don’t forget #!/bin/bash or #!/bin/tcsh
Make sure to run "chmod u+x" on your script!

Variables - Bash style: VAR="string" (no spaces!)
 Tcsh style: set VAR = “string”

Arguments - $1 $2 $3 ...

Solution to Exercise 1

#!/bin/bash

NUMBER="4"

BINDIR="/path/numbertools/"

echo "Running programs..."

echo "Number:"$NUMBER

echo "Square area"
$BINDIR/square $NUMBER

echo "Circle area"

$BINDIR/circle $NUMBER

echo "Is it prime?"
$BINDIR/prime $NUMBER

#!/bin/tcsh

set NUMBER = 4

set BINDIR = /path/numbertools

echo "Running programs..."

echo "Number:"$NUMBER

echo "Square area"
$BINDIR/square $NUMBER

echo "Circle area"

$BINDIR/circle $NUMBER

echo "Is it prime?"
$BINDIR/prime $NUMBER

Script Arguments

#!/bin/bash

ARG1=$1

ARG2=$2

#ARG3=$3, and so on

echo $ARG1
echo $ARG2

#!/bin/tcsh
set ARG1 = $1

set ARG2 = $2

#set ARG3 = $3, so on

echo $ARG1
echo $ARG2

If the script is named “myscript.sh” (or “myscript.csh”), the script
is executed with “myscript.sh myarg1 myarg2 ... myargN”

Commands to string

• The output of a string can be put directly into a
variable with the backtick: `

• The backtick is not the same as a single quote:

` '
• Bash form: VAR="`wc -l $FILENAME`"

• Tcsh form: set VAR="`wc -l $FILENAME`"

Dates and Times

• Date strings are easy to generate in Linux

– The “date” command gives the date, but not
nicely formatted for filenames

– "date --help" will give format options (use +)

• A nicely formatted string format:
 date +%Y-%m-%d_%k-%M-%S

 "2014-09-15_17-27-32"
• For a really unique string, you can use the following command to get a

more or less unique string (not recommended for cryptographic purposes)

 $(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1)

Exercise 2

Modify the script you wrote in Exercise 1 so that the number is
assigned from a script argument, and the output is written to a file
that is dated. Use the date command in combination with backticks
to create a filename.

Command execution to string - VAR="`command`" (use the backtick)

Dates - date +%Y-%m-%d_%k-%M-%S (or pick your own format)

Command redirection refresher
• You can output to a file using the “>” operator.

 cat filename > outputfile

• You can append to the end of a file using “>>”
 cat filename >> outputfile

• You can redirect to another program with “|”
 cat filename | wc –l

Solution to Exercise 2

#!/bin/bash

NUMBER=$1

DATE=`date +%Y-%m-%d_%k-%M-%S`

FILENAME="myfile-$DATE"

BINDIR="/path/numbertools/"

echo "Running programs..."

echo "Number:"$NUMBER >> $FILENAME

echo "Square area" >> $FILENAME

$BINDIR/square $NUMBER >> $FILENAME

echo "Circle area" >> $FILENAME

$BINDIR/circle $NUMBER >> $FILENAME

echo "Is it prime?" >> $FILENAME

$BINDIR/prime $NUMBER >> $FILENAME

#!/bin/tcsh

set NUMBER = $1

set DATE = "`date +%Y-%m-%d_%k-%M-%S`"

set FILENAME="myfile-$DATE"

set BINDIR="/path/numbertools/"

echo "Running programs..."

echo "Number:"$NUMBER >> $FILENAME

echo "Square area" >> $FILENAME

$BINDIR/square $NUMBER >> $FILENAME

echo "Circle area" >> $FILENAME

$BINDIR/circle $NUMBER >> $FILENAME

echo "Is it prime?" >> $FILENAME

$BINDIR/prime $NUMBER >> $FILENAME

Every time you run the script, a new unique output file
should have been generated.

Conditionals (If statements)

#!/bin/bash

VAR1="name"

VAR2="notname"

if [[$VAR1 == $VAR2]]; then

 echo "True"

else

 echo "False"

fi

if [[-d $VAR]]; then

 echo "Directory!

fi

#!/bin/tcsh

set VAR1="name"

set VAR2="notname"

if ($VAR1 == $VAR2) then

 echo "True"

else

 echo "False"

endif

if (-d $VAR) then

 echo "Directory!"

endif

• The operators ==, !=, &&, ||, <, > and a few others work.
• You can use if statements to test two strings, or test file

properties.

Conditionals (File properties)

Test bash tcsh

Is a directory -d -d

If file exists -a,-e -e

Is a regular file (like .txt) -f -f

Readable -r -r

Writeable -w -w

Executable -x -x

Is owned by user -O -o

Is owned by group -G -g

Is a symbolic link -h, -L -l

If the string given is zero length -z -z

If the string is length is non-zero -n -s

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for/foreach statements)

#!/bin/bash

for i in 1 2 3 4 5; do

 echo $i

done

for i in *.in; do

 touch ${i/.in/.out}

done

for i in `cat files`; do

 grep "string" $i >> list

done

#!/bin/tcsh

foreach i (1 2 3 4 5)

 echo $i

end

foreach i (*.in)

 touch "$i:gas/.in/.out/"

end

foreach i (`cat files`)

 grep "string" $i >> list

end

• Loops can be executed in a script --or-- on the command line.
• All loops respond to the wildcard operators *,?,[a-z], and {1,2}
• The output of a command can be used as a for loop input.

Exercise 3
- Write a new script that uses randgen and prime to

determine if a random list of integers is prime or not. Use
a combination of a for loop and an if statement.

- Write all of the prime numbers into one file, and non-
prime numbers into the other. Do this for a list of at least
300 integers.

- Prime will always output "IsPrime" if the number is prime

For loops - Bash : for VAR in `command`; do ... done

 Tcsh : foreach VAR (`command`) ... end

If statements - Bash : if [[condition]]; then ... else ... elif ... fi

 Tcsh : if (condition) then ... else ... else if ... endif

Solution to Exercise 3

#!/bin/bash

COUNT=300

BINDIR=/path/numbertools

for i in `$BINDIR/randgen $COUNT`; do

 RESULT=`$BINDIR/prime $i`

 if [[$RESULT == "IsPrime"]]; then

 echo $i >> primes

 else

 echo $i >> notprimes

 fi

done

#!/bin/tcsh

set COUNT=300

set BINDIR=/path/numbertools

foreach i (`$BINDIR/randgen $COUNT`)

 set RESULT="`$BINDIR/prime $i`"

 if ($RESULT == "IsPrime") then

 echo $i >> primes

 else

 echo $i >> notprimes

 endif

end

End of day 3!

Questions?

Email issues@chpc.utah.edu

String replacement

#!/bin/bash

IN=“myfile.in”

#changes myfile.in to myfile.out

OUT=${IN/.in/.out}

./program < $IN > $OUT

#!/bin/tcsh

set IN = “myfile.in”

#changes myfile.in to myfile.out

set OUT=“$IN:gas/.in/.out/”

./program < $IN > $OUT

A neat trick for changing the name of your output file is to use
string replacement to mangle the filename.

• In tcsh the ‘gas’ in “$VAR:gas/search/replace/” means to
search and replace all instances (“global all substrings”); there
are other options (use “man tcsh”).

• In bash, ${VAR/search/replace} is all that is needed.

• You can use 'sed' or 'awk' for more powerful manipulations.

