

Getting to know the "island universes" out there.

Galaxies I

ASTR 555 Dr. Jon Holtzman

Outline for Today

- * Building Blocks Dust:
 - Extinction
 - Emission

- Dust is <1% of the interstellar medium by mass, yet it can have important observational effects:
 - Obscures light from stars & gas
 - Emits radiation (mostly IR)
 - Affects ISM chemistry, e.g., creation of H₂
 - Contributes to ISM heating & cooling

Extinction —

- Scattering + Absorption
- * Causes decrease in flux:

$$A_{\lambda} = -2.5 \log \frac{F_{\lambda}}{F_{\lambda,0}}$$

 Varies with wavelength, causes change in color, i.e., "reddening":

$$E(\lambda - V) = A_{\lambda} - A_{V}$$

NGC1999 reflection nebula and Bok globule (Image credit: NASA and The Hubble Heritage Team, STScI)

Extinction Curve:

- escribes spectral shape of extinction
- Derived from objects with known SEDs
- Rises to shorter wavelengths, with bump at ~2200Å
- Encodes properties of the dust,
 e.g., composition, grain size
 distribution
 - Grains absorb/scatter most effectively at wavelengths ~ grain size

 Reddening E(B-V) and total extinction A_V
 parameterized by a factor R_V that depends on dust properties:

$$R_V \equiv A_V / E(B - V)$$

e.g., "Standard"
 Milky Way extinction
 curve has R_V = 3.1

Thought Questions

We discussed correcting Halpha fluxes in HII regions for extinction using the Hbeta flux (to use the Halpha flux to estimate star formation rate)

- The Halpha/Hbeta flux ratio in the absence of extinction has a value close to 3.
- Imagine you observe a ratio of 4. What is the inferred extinction E(Hbeta Halpha)?
- If $A_{Hbeta}/A_V = 1.2$, and $A_{Halpha}/A_V = 0.8$ (i.e., from an extinction law), then what is A_V and A_{Halpha} for your observation?
- How much do you have to correct your Halpha flux by?

Thought Questions

- The Halpha/Hbeta flux ratio in the absence of extinction has a value close to 3.
- Imagine you observe a ratio of 4. What is the inferred reddening E(Hbeta Halpha)?
 E(Hbeta-Halpha) = -2.5 log 0.75 = 0.3
- If $A_{Hbeta}/A_V = 1.2$, and $A_{Halpha}/A_V = 0.8$ (based on extinction law), then what is A_V and A_{Halpha} for your observation??

 $0.3 = 0.4 A_V$: $A_V = 0.75$, $A_{Halpha} = 0.6 A_{Hbeta} = 0.9$

How much do you have to correct your Halpha flux by?
 10.**(0.4*0.6) = 1.73

- Extinction Curve Complications:
 - Regional Variations
 - Dust Geometry

a)

- Simple "Foreground screen"?
- Integrated galaxy light often more complicated

 Attenuation — extinction + photons scattering back into line of sight

- * How much dust is there?
 - Well-correlated with HI:

 $N(H) = 5.8 \times 10^{21} E(B - V) cr$

- Dust-to-gas ratio may depend on metallicity and star formation
- Direct probe using observations of "overlapping" galaxies extinction is non-negligible!
- Likely patchy: galaxies are both opaque and transparent

NGC 3314 — NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and W. Keel (University of Alabama)

* Dust Emission:

- Heated predominantly by radiation from stars and AGN
- <u>Approximated</u> as a blackbody in far-IR
- Sharp emission features at ~10 microns from PAH molecules
- Forming dust is hard : much thought to be formed in envelopes around cool stars

https://fwwa.org/2018/03/19/pah-pollution-tar-based-sealants/

Figure 24.7 Infrared emission spectrum for model with silicate and graphite/PAH grains in ISRF intensity scale factor U from 0.1 to 10^4 (U = 1 is the local ISRF). Spectra are scaled to give power per H nucleon per unit U, calculated using the model of Draine & Li (2007).

Dust Emission:

- Find galaxies with 10 -100x more
 IR emission than typical galaxy:
 - Luminous and Ultra-luminous
 IR galaxies (LIRGs, ULIRGs)
- Dust emission traces star formation — increasingly large contribution at higher redshift
- Note negative K-correction in submm, makes dust easier to observe at higher redshift

