

Getting to know the "island universes" out there.

Galaxies I

ASTR 555 Dr. Jon Holtzman

Outline for Today

- Building Blocks Stars and Stellar Populations:
 - Star FormationHistories (SFH)
 - UnresolvedPopulations

- What affects the integrated light of an unresolved stellar population?
 - Which stars contribute the most light?
 - How does the integrated luminosity and color change in time?
- How do you go from luminosity to estimating stellar mass: the stellar mass-to-light ratio

Thought Questions

- * How does the luminosity of a star scale with a star's mass on the Main Sequence?
- * How does the number of stars scale with stellar mass?
- How does the contribution to integrated luminosity scale with star mass along the Main Sequence — in other words, which stars contribute the most light?

$$\begin{array}{l} L_{\pm}(M) \propto M_{\pm}^{3.5} \quad \text{along MS} \\ N_{\pm}(M) \propto M_{\pm}^{-2.35} \quad f_{\pi} \quad a \; Salpeter \; IMF \\ L_{\pm 0}(M) \sim M_{\pm}^{-(M)} \; N_{\pm}(M) \sim M_{\pm}^{3.5} \; M_{\pm}^{-2.35} \\ L_{\pm 0}(M) \sim L_{\pm}(M) \; N_{\pm}(M) \sim M_{\pm}^{3.5} \; M_{\pm}^{-2.35} \\ L_{\pm 0}(M) \sim M_{\pm}^{-1.15} \\ So \; high \; mass \; stars \; contribute more light \end{array}$$

x

N 1 1

200

 \tilde{z}

Thought Questions

- How about the contribution to total stellar mass?
- Which stars contribute the most mass?

$$M_{tot}(M) \sim N_{\star}(M) M_{\star} \sim M_{\star}^{-2.35} M_{\star}$$

 $M_{tot}(M) \sim M_{\star}^{-1.35}$
 $M_{tot}(M) \sim M_{\star}^{-1.35}$
 S_{D} low mass stars contribute the most mass.

- Integrated light from unresolved simple/single stellar population (SSP) — which stars contribute the most light?
 - On the Main Sequence, much more mass in low mass stars
 — M_{tot} α M^{-1.35}
 - * However, more
 luminosity from high mass
 stars L_{tot} α M^{1.15}

Massive (young) stars dominate light if they exist

- What about older populations>
- After Main Sequence Turn-Off (MSTO):
 - Initially, massive stars "peel off" MS and change color
 - However, still very luminous (supergiants!)

- After Main Sequence Turn-Off (MSTO):
 - All lower mass stars reach comparable luminosity (TRGB)
 - Post-MS evolution is fast luminosity of evolved stars at a given time from (nearly) a single mass
 - RGB stars have nearly same mass as MSTO stars, but significantly more luminous

10

t/Gyr

5

15

20

- After Main Sequence Turn-Off (MSTO):
 - All lower mass stars reach comparable luminosity (TRGB)

Luminosity (L_{sun})

- Post-MS evolution is fast luminosity of evolved stars at a given time from (nearly) a single mass
- **RGB** stars have nearly same mass as **MSTO** stars, but significantly more luminous

Later on, evolved stars dominate light

Thought Question

- The luminosity of an evolved SSP will depend primarily on the number of red giant stars.
 - * How will the number of red giant stars change with time?
 - Note that there are two factors that will enter into this!

M15 (Krauss 2000)

Stars and Stellar Population² 0.10

- * How does the **integrated luminosity** of an SSP evolve over time?
 - Depends on the number of red giants, (roughly the same as the number of stars evolving off the MS):
 - how many stars of a given mass formed (IMF)
 - how quickly stars of a given mass turn off the MS
 - Competing effects lower mass stars are more numerous but peel off MS more slowly

- * How does the **integrated luminosity** of an SSP evolve over time?
 - Depends on the number of red giants, (roughly the same as the number of stars evolving off the MS):
 - how many stars of a given mass formed (IMF)
 - how quickly stars of a given mass turn off the MS
 - Competing effects lower mass stars are more numerous but peel off MS more slowly

Given a typical IMF, SSP will fade slowly over time

- * How does the integrated color of an SSP evolve over time?
 - * Over time, larger fraction of stars have evolved off the Main Sequence
 - Less evolution at long wavelengths

Due to changing stellar population mix, SSP will slowly redden over time Thought Question

- Suppose we want to estimate the stellar mass of a galaxy based on its observed magnitude and integrated light spectrum:
 - * What do you need to consider to do this?

- * How can we estimate the stellar mass from integrated light?
 - * Consider the stellar mass-to-light ratio:
- $M/L \equiv \frac{(M/M_{sun})}{(L/L_{sun})}$

- For individual stars, the M/L decreases as mass increases L α M^{3.5} on MS so M/L α M^{-2.5}
- For a population, M/L
 depends strongly on IMF

- Estimate stellar M/L from broadband color or from spectrum
- Luminosity + stellar M/L gives stellar mass
- Stellar M/L depends on bandpass and SFH
 - Less variation in near-IR (less sensitive to younger stars)
 - K-band luminosity often used as a rough proxy for stellar mass
- Absolute value of M/L of a population depends strongly on IMF. Relative values characterize different stellar pops for fixed IMF.

