Getting to know the “island universes” out there.
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Warm-up

What is the physical
relationship between an
HR diagram vs. a CMD?
An isochrone vs. an
evolutionary track?

Why are giant stars
redder/cooler than Main
Sequence stars?

Why are metal-rich stellar
populations redder?
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What is the physical
relationship between an
HR diagram vs. a CMD?
An isochrone vs. an
evolutionary track?

Why are giant stars
redder/cooler than Main
Sequence stars?
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Why are metal-rich stellar

populations redder?
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Building Blocks - Stars and |

+ Metallicity Effects:

« Higher metallicity
increases internal
opacity and
atmospheric
absorption (line
blanketing in blue)

+ More metal-rich

populations
redder
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Figure 3: Comparison of STIS spectra of two K giants with very different metallicity. The
metal rich star is overplotted as the grey line in the lower panel. This comparison highlights
the need for a wide range of not only temperatures but abundances in stellar libraries for
proper modeling of composite systems.
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Building Blocks - Stars and Stellar Populations

+ Metallicity terminology:
+ Often given as mass fractions:

+ Hydrogen (X), Helium (Y), and heavier elements (Z),
where X+Y+Z7=1

+ Solar abundance: X~0.73, Y~0.25, Z~0.02

+ Note that Z contains lots of different elements!
(astronomers just call them all “metals”)

+ Also denoted using:

[Fe/H| = log((Fe/H)/(Fe/H)sun)



Outline for Today

* Building Blocks - Stars
and Stellar
Populations:

+ Qverview /Review
of Stellar Evolution

and the HR
Diagram

+ CMD Features

« Effect of metallicity/
age /binaries

M31, Southwest arm, NGC 206 (Credit: Robert Gendler)



Stars and Stellar Populs

Main Sequence (MS)

= Mass Sequence — L a M35

Lifetime scales with mass —
tMS [0 ¢ M-2.5
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Stars and Stellar Populs

* Main Sequence (MS)

+ Shifts towards redder colors and
cooler T for higher metallicities

+ Also shifts due to He abundance
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Stars and Stellar Populz ol 4, s G

= Branch
> 107
+ Sub-Giant Branch (SGB) S 1L

I= exhaustion
+ Runs out of core H, core starts to 31024
contract
10 44
| | | |
« H shell ignites, envelope starts to 40000 20000 10,000 5000 2,500

Temperature (K)
Credit: Richard Pogge

expand and cool
+ Red Giant Branch (RGB)
+ Shell contracts, heats — increases L

« Envelope cools, higher T gradient
increases convection — increases L

+ Deeper convection zone dredges up
heavier elements from interior

* Loosely bound envelope more easily
expelled via radiation pressure —
mass loss



Siegel et al. 2007
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+ Red Giant Branch (RGB) 2l |
2
+ Temperature and shape :
of RGB depends on e s
mass, age, & metallicity f———
+ Evolutionary tracks of J |
stars of different initial | >
3 | N\
masses converge on RGB e N\ (7o
+ Shell output tied to of i
core mass — all have E
similar core masses e
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Thought Question

Siegel et al. 2007

14
9

+ How does the tip of the ~ (Fe/HI="18

Red Giant Branch op ([Fe/H] = 0) 3
appear to depend on g =
metallicity in this plot? af |

3
24 -

* But didn’t we say that
the Tip of the Red Giant
Branch was a good
distance indicator?

26

L)

* What's going on?



Thought Question

_S _LI1IIITI]TII1T11T1‘TI]IITIll‘lllllllll!lll
C DA1990: M15, M2, NGC 1851, 47 Tuc .
-4 ’:_ _:
Mr - =
. ]
-2 - =
ul %E
-3 —
-2 - —]
My :
-1 -.E
= (b) A
_g FHHH PP P
" Yale1987: ¥ = 023, Z = 0001 ([Fe/H) = -13)
4: Age = 7,8,13,17Cr 3
M sE
-2 :_ -
= (e)
-1 | I FERETERTNE SRR
1 1.5 2.0 25

(v-1),

FiG. 1.--{a) Empirical loci in the M, — (V — I), diagram of the red giant
branch for Galactic globular clusters: M15, M2, NGC 1851, and 47 Tug, the
metallicities of which are [Fe/H] = —2.17, —1.58, —1.29, —0.71 dex, respec-
tively. Note that the | magnitude of the tip of the red giant branch changes
little due to metallicity. (b) An M, — (V —I), diagram with the same sequence
as in (a). Note that the V magnitude of the tip of the red giant branch changes
by ~ 1.3 mag for the metallicity range of —22 < [Fe/H] < —0.7 dex. (¢) An
M, — (V - I), diagram showing a set of Revised Yale theoretical isochrones for
[Fe/H] = — 1.3 dex and ages of 7,9, 13, and 17 Gyr. Note how insensitive the [
magnitude of the tip of the red giant branch is 1o age. Lee et al. 1993
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age and metallicity at long
wavelengths
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> 102
+ Red Giant Branch (RGB) — Features § 1L
g exhaustion
+ Tip of RGB — 102
+ Set by He fusion ignition 1049 1 1 1 .
s T40000 20000 10,000 5,000 2,500
+ Close to constant luminosity Temperature (K)
regardless of age or metallicity Sl ce oRks

+ PDistance indicator!

* RGB bump

elium is dumped
ore

+ H-fusing shell crosses chemical
discontinuity from first dredge-up

dydrogen-burnin

=

Helium-rich co

p?

+ Lower efﬁciency fusion causes

pile up of stars at same L

Increased l

and metalll(:lty Hydrogen Shell Burning on the Red Giant Branch

https://www.atnf.csiro.au/outreach/education/senior/astrophysics/stellarevolution_postmain.html

* Location depends on mass, age,
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Stars and Stellar Populs

Red Giant
Branch

+ Red Giant Branch (RGB) — Features

exhaustion

Luminosity (L)

+ Tip of RGB 1021

* Set by He fusion ignition 104 1 | | ]
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+ Distance indicator!

* RGB bump
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* Location depends on mass, age,
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Helium
1057
Flash
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+ Horizontal Branch (HB) 2 1L
£ exhaustion
« Core temperature reaches 100  ~ 10°F
million K — He fusion ignites 1044
5 *40,000 20,000 10,000 5,000 2,500
# Star readjusts: Lemperatixe (O
Credit: Richard Pogge
# Core expands, decreasing
shell output — lower L # Luminosity of He-fusing
+ Envelope shrinks — higher T~ stars depends on core

mass, which is similar for
all lower-mass stars

% (Gives rise to a Horizontal
Branch (HB)




Stars and Stellar Populs

+ Horizontal Branch (HB)

+ Location of a star on HB
partly related to
envelope mass:

* Variable mass loss on
RGB and at He flash
gives a range of
envelope masses

+ Stars with smaller
envelopes (and radii)
are bluer

A Helium
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of Rotating Stars, Springer-Verlag



https://faculty.virginia.edu/ASTR5610/lectures/globular_clusters/intro.html
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Stars and Stellar Populatic
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- NGC 7099 r NGC 6205

+ Horizontal Branch (HB)
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e
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* A Helium Core Fusing >2° _ { j
Sequence — but see a wide |
range in morphology! e |

Fuaune 4. Clusters with four very dificrent, types of horizontal branch. (Data courtesy of M.

& Depends somewh at on mﬁ;&ducs.t ::))m [private communication]; source is. HST archival images of the centers of

metallicity: I

* Metal-poor — blue
Horizontal Branch (BHB) o nevor

* Metal-rich — pileupin Red
Horizontal Branch (RHB) O

* Intermediate age (higher _
mass) stars — Red Clump T
(RC) el o1

F555W-F814W
Ross, Holtzman et al.
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Thought Ques

+ Consider these two pairs of globular clusters.

+ Based on the HB morphology, which
cluster in each pair is likely more metal-

rich?
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Thought Ques

+ Consider these two pairs of globular clusters.

+ Based on the HB morphology, which
cluster in each pair is likely more metal-
rich?
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Stars and Stellar Populations

* Something else must be

R/
0‘0

R/
0‘0

involved — second-parameter
problem

€.

g. M3 and M13 have same

metallicity but very different HB

Likely age? Maybe also He

d

bundance, CNO abundances,

C

uster concentration, or stellar

rotation rates?
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Stars and Stellar Popul

+ Horizontal Branch (HB) —
Features

+ Extreme Horizontal Branch

7/
§ X4

o0

“blue tail” — may be extra
mass loss combined with

flux moving out of optical
bands into UV at these T

“blue hook” — may be due
to severe mass loss on RGB
or He enrichment or rapid
rotation during formation
leading to mass loss
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£ Ge
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=102
Horizontal Branch (HB) 1041 | | | |
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+ Where stars intersect |
"
instability strip — “
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+ Variable stars — RR o ¢
Lyrae (plus Cepheids, 1
delta Scuti, etc.)
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Thought Question

« What will happen physically to the star once it runs out
of Helium in the core.

* Where will the star “move” on the HR diagram and
why?



Stars and Stellar Populs

+ Asymptotic Giant Branch (AGB)

+ Similar to RGB:

7
0’0

Run out of core He — core
contracts, He shell ignites,

envelope expands and cools,
leading to the convection and

dredge-ups

Star becomes redder and
brighter, with luminosity set
by core mass

Tip of AGB asymptotically
approaches RGB (hence the
name!)
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) Asymptotic

1057 :
Stars and Stellar Populs .
p C2 10 g, Red Giant
= el S Horizontal Branch { Branch
= 7o
+ Asymptotic Giant Branch (AGB) £ i}
g exhaustion
# Nuclear burning occurs in two = 7]
shells — thermally unstable — 1041 | | | |
leading to thermal pulses. T40,000 20,000 10,000 5,000 2,500
Temperature (K)
: Credit: Richard Pogge
* A strong stellar wind due to AR e A R A
high radiation pressure in the i i i
envelope (and thermal pulses) | ~ HB
16
+ Metallicity etfects:
R 18 i 3
+ Solar metallicity — AGB - ps O ngEd
close to the RGB = & :
MS
+ Metal-poor — AGB and
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https://iopscience.iop.org/article/10.1086/522567

Stars and Stellsr Populati()%lsw-

20

End stages of stellar evolution:

Luminosity (
F814W

Lower mass stars (< 8 M,):

Planetary nebula — expelled mass lit
up briefly

30 | L. RN

White dwarf — leftover hot core of e

Star, landS on COOling Sequence NGC 6397, nearby globular cluster (Hansen et al. 2007)
Higher mass stars (>8 M,):
|
Continue fusing up to Iron, looping s | l
: b fusing shell
back and forth across the HR diagram s
Supernovae — generate significant : |
z , 2 IL | 1g shell
fraction of heavy elements and input i sing shell
. £ I . o
thermal and mechanical energy s [ ing shell
:'§ Mare ""f:j-:.. : no fusion)
Neutron star — mergers generate | § 1 T
additional heavy elements 5|

Mass number
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Stellar cannibalism

Stars and Stellar Populatiorn s

.8

Stellar collision

Potential importance of binaries: P

Unresolved (non-interacting)
binaries — broaden sequences in

CMD Credit: Astronomy Magazine
Interacting binary stars: ] oo
Blue Stragglers: possible stellar R
merger / interaction products z [ )
(e.g., M3, Sandage 1953) g I ,
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e
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A
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Supernova Type SNIa: arise from S

binaries with a white dwarf, | SeeE

produce different heavy element - T
abundances than core collapse SN e
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