

Getting to know the "island universes" out there.

Galaxies I

ASTR 555
Dr. on olt man

Midterm grade distibution (out of 70)

Warm-up

* How do these diagrams relate to measuring the clustering of galaxies?

Random

Warm-up

* How do these diagrams relate to measuring the clustering of galaxies?

https://telescoper.wordpress.com/2009/04/04/points-and-poisson-davril/

Course Overview

* Modules:
* Observing Galaxies - the main techniques used for observing galaxies
- Galaxy Population - the observed properties of galaxies
* Building Blocks - the basic building blocks that make up individual galaxies: stars, gas, black holes, dark matter
* Milky Way — our own Galaxy

Outline for Today

* Building Blocks Stars and Stellar Populations:
* Overview / Review of Stellar
Evolution and the HR Diagram

M31, Southwest arm, NGC 206 (Credit: Robert Gendler)

Stars and Stellar Populatio

- One component of galaxies are stars
- Observable:
* spectral energy distributions (or colors) of stellar component
* for most galaxies, as unresolved light (can't separate out individual stars)
* for nearby galaxies, can see individual stars, brighter stars are easier than fainter; also depends on spatial resolution (e.g., ground vs space)
* Stellar population:
* a stellar population is a collection of stars
* unresolved stellar population SED depends on relative numbers and types of stars

Stars and Stellar Populations

* How can we relate what we observe about a stellar population to the intrinsic characteristics?
* Stars exist with range of temperatures and luminosities
* Underlying population characteristics:
* relative number of stars as a function of mass, composition, and age
* generally referred to as the star formation history
- sometimes that is used to describe distribution of ages only
* need to understand how these population characteristics translate to observables

--> Stellar structure \& evolution!

Stars and Stellar Populations: Stellar Evolution

- Stars o note ist with arbitrary combinations of temperature an luminosity

Russell-Vogt Theorem:

The mass and chemical composition of a star uniquely determine its radius, luminosity, internal structure, and subsequent evolution.

- bservable properties of stars epen almost only on their mass age an chemical composition

Stars and Stellar Populations: Stellar Evolution

*Overview / Review of Stellar Evolution

* Assume spherical symmetry and that the star is quasi-stable
*Physical parameters of star (luminosity, radius, temperature) connected by a set of differential equations

What are the equations that govern stellar structure and evolution?

Building Blocks - Stars and Stellar Populations: Stellar Evolution

* Overview / Review of Stellar Evolution
* Assume spherical symmetry and that the star is stable (at least for a time)
- Physical parameters of star (luminosity, radius, temperature) connected by a set of differential equations

Hydrostatic equilibrium (dP/dr) Mass conservation (dM/dr) Energy generation (dL/dr) Energy transport (dT'dr)

Building Blocks - Stars and Stellar Populations: Stellar Evolution

* Additional ingredients:
* Equation of state: $\mathrm{P}=\mathrm{P}(\rho, \mathrm{T}, \mathrm{X})$, where $X=$ chemical composition
* Opacity: $\kappa=\kappa(\rho, T, X)$
* Energy generation rate: $\varepsilon=\varepsilon(\rho, T, X)$
* e p-p chain - dominant in lower mass, cooler stars like the Sun
$*$
e CNO cycle - dominant in higher mass, hotter stars
* e triple alpha process

Solve for the evolution of a star over time

http://csep 10.phys.utk.edu/astr 162/lect/energy/ppchain.htmI

http://outreach.atnf.csiro.au/education/senior/astrophysics/ stellarevolution mainsequence.html\#mscno

Stars and Stellar Populations: Stellar Evolution

* Key tool of stellar evolution: Hertzsprung-Russell (HR) Diagram
- Color vs. absolute magnitude
* underlying properties:temperature vs. luminosity
* main sequence = mass sequence

Brown et al. 2016

Thought Question

* Consider the main stages of stellar evolution for a single low mass star:
* Sketch where the star is on the HR diagram in each stage
*What is going on inside the star at each stage?

Stars and Stellar Populations: Stellar Evolution

higher mass

- Main Stages of Stellar Evolution:
* Hydrogen core burning: Main Sequence
* Hydrogen shell burning:

Giant Branch (for lower mass stars)

- Helium core burning: Horizontal Branch
* Helium shell burning: Asymptotic Giant Branch
* End stages (lower mass stars): White Dwarf
* Other nuclear burning (for high mass stars)
* End stages (higher mass stars): Supernova

Stars and Stellar Popula

* Main Sequence (MS)
* = Mass Sequence
* find that, roughly, $\mathrm{L} \boldsymbol{\alpha} \mathbf{M}^{3.5}$
* Given that more massive stars also have more raw material to process, what does this imply about the scaling of main sequence lifetime with mass of a star?

Credit: Richard Pogge

Stars and Stellar Popula

* Main Sequence (MS)
* = Mass Sequence $-\mathrm{L} \boldsymbol{\alpha} \mathrm{M}^{3.5}$
* Lifetime scales with mass $\mathbf{t}_{\mathrm{MS}} \propto \mathrm{M}^{-2.5}$
* Luminosity class - dwarfs

table 2l-l	Approximate Main-Sequence Lifetimes				
Mass	Surface temperature				
$\left(\mathbf{M}_{\odot}\right)$	(K)	Spectral class	Luminosity $\left(\mathbf{L}_{\odot}\right)$		Main-sequence lifetim
:---:					
$\left(\mathbf{1 0} 0^{6}\right.$ years $)$					
25					

The main-sequence lifetimes were estimated using the relationship $t \propto 1 / \mathrm{M}^{2.5}$ (see Box 21-2).

Credit: Richard Pogge

Stars and Stellar Popula

- Sub-Giant Branch (SGB)
- Runs out of core H, core starts to contract
* H shell ignites, envelope starts to expand and cool

Credit: Richard Pogge

- Red Giant Branch (RGB)
- Shell contracts, heats - increases L
- Envelope cools, higher T gradient increases convection - increases L
* Deeper convection zone dredges up heavier elements from interior
* Loosely bound envelope more easily expelled via radiation pressure so es all mass loss ossi le

Stars and Stellar Popula

 Credit: Richard Pogge

* Luminosity of He-fusing stars depends on core mass, which is similar for all lower-mass stars
* Gives rise to a Horizontal Branch (HB) for low mass stars

Stars and Stellar Popula
 * Horizontal Branch (HB)
 * Location of a star on HB partly related to

 envelope mass:Credit: Richard Pogge

* Variable mass loss on RGB and at He flash gives a range of envelope masses
* Stars with smaller envelopes (and radii) are bluer

Stars and Stellar Populatic

- Horizontal Branch (HB)

* A Helium Core Fusing Sequence - but see a wide range in morphology!
* Depends somewhat on metallicity an a e
- Metal-poor - blue Horizontal Branch (BHB)
* Metal-rich - pile up in Red Horizontal Branch (RHB)
- Intermediate age (higher mass) stars - Red Clump (RC)

Figure 4. Clusters with four very different types of horizontal branch. (Data courtesy of M. Zoccali \& G. Piotto [private communication]; source is. HST archival images of the centers of globular clusters.)

Stars and Stellar Pop - Asymptotic Giant Branch (AGB)
 * Similar to RGB:
 * Run out of core He - core contracts, He shell ignites, envelope expands He shell ignites, envelope expands and cools, leading to the convection and dredge-ups
 * Star becomes redder and brighter,
 Star becomes redder and brighter, with luminosity set by core mass
 * Tip of AGB asymptotically approaches RGB (hence the name!) for ol er populations
 * or interme iate age few yr stars i.e, stars with more mass, goes $\begin{array}{lr}\text { i.e, stars with more mass, } & \text { goes } \\ \text { to higher luminosity than } & \text { can }\end{array}$ $\begin{array}{lr}\text { i.e, stars with more mass, } & \text { goes } \\ \text { to higher luminosity than } & \text { can }\end{array}$ be responsible for significant amount of light from a stellar population

 la

Stars and Stellar Popul - Asymptotic Giant Branch (AGB)
 - Nuclear burning occurs in two shells - thermally unstable leading to thermal pulses.

- A strong stellar wind due to high radiation pressure in the envelope (and thermal pulses)
* sources of chemical enrichment for some elements

Credit: Richard Pogge

Maraston 2003

Stars and Stelkgr Populations

* End stages of stellar evolution:
* Lower mass stars ($<8 \mathrm{Mo}$):
* Planetary nebula - expelled mass lit up briefly
- White dwarf - leftover hot core of star, lands on cooling sequence * Higher mass stars (>8 Mo):
- Continue fusing up to Iron, looping back and forth across the HR diagram
- Supernovae - generate significant
 fraction of heavy elements and input thermal and mechanical energy
- Neutron star - mergers generate additional heavy elements
* tars of some masses may create blac holes

Stars and Stellar Population

* Binary stars complicate stellar population modeling:
* $\sim 50 \%$ of stars are in binaries!
* Unresolved (non-interacting) binaries - broaden sequences in CMD
- Interacting binary stars:
* Blue Stragglers: possible stellar merger/interaction products (e.g., M3, Sandage 1953)
* Supernova Type SNIa: arise from binaries with a white dwarf, produce different heavy element abundances than core collapse SN

Credit: Astronomy Magazine

Thought Questions

* What features can you identify in this CMD?
* What is going on inside stars at different location in this CMD?
* What type of object do you think this is a CMD of?

M15 (Krauss 2000)

Stars and Stellar Populations: Stellar Evolution

* Stellar evolution models predicts evolution for a given mass - an evolutionary track
* Stellar evolution fairly well (but not perfectly) understood:
* uncertainties
generally larger for
later stages

Figure 5.2 Evolutionary tracks for solar-metallicity stars $(Y, Z)=(\mathbf{0 . 2 8}, 0.02)$ with initial masses from $0.6 \mathcal{M}_{\odot}$ to $100 \mathcal{M}_{\odot}$. On each track several points are marked and numbered. Table 5.2 gives the time it takes a star to reach each of these points starting from point 1. To avoid confusion tracks for $\mathcal{M} \leq 2 \mathcal{M}_{\odot}$ terminate at the He flash - see Figure 5.3 for the further tracks of these stars. All models assume convective overshoot. [From data published in Bressan et al. (1993)]

[^0]
Stars and Stellar Populations: Stellar Evolution

* For a collection of stars with a range of masses, the cross section of properties at a fixed time is an isochrone
- Some well-known collections of evolutionary trac s isocrhones
* Padova, BASTI (Teramo), Dartmouth, Yale-Yonsei, ictoria egina

da Cunha 2008

Stars and Stellar Populations

Russell-Vogt Theorem:

The mass and chemical composition of a star uniquely determine its radius, luminosity, internal structure, and subsequent evolution.

* Stellar evolution models predict radius, luminosity, as a function of age for given mass and composition
* Tied to quantities at surface of the star:
* Effective temperature Teff
* Surface gravity g usually log g

$L=4 \pi R^{2} \sigma T_{\mathrm{eff}}{ }^{4}$

* Use stellar atmosphere models (e.g., Kurucz, MARCS Phoeni ,TLUSTY, et al) and radiative transfer codes (Turbospectrum, Synspec, SYNTHE, MOOG, et al.) to predict spectra, colors, magnitudes

$$
g=\frac{G M}{r^{2}}
$$

Stars and Stellar Populations : age effects

* A simple stellar population consistest of stars of a range of mass for a given age and metallicity
* How do age and metallicity of an SSP affect what we observe?
* Age Effects:
* stars of decreasing masses evolve off the Main Sequence
* see change in model isochrones

da Cunha 2008

Stars and Stellar Populations

* Metallicity Effects -interior:
* Higher metallicity increases internal opacity
* more metal-rich populations cooler and thus redder

Credit: MESA

Stars and Stellar Populations: metallicity effects

* Metallicity Effects -atmosphere:
* Higher metallicity increases atmospheric absorption
* lots of metal lines in the blue - line blanketing (redder colors, even at same temperature)
* both interior and atmospher contribute to making more metal-rich populations redder

http://burro.case.edu/Academics/Astr222/Galaxy/Structure/metals.html

Stars and Stellar Populations

* Metallicity terminology:
* Sometimes given as mass fractions:
* Hydrogen (X), Helium (Y), and heavier elements (Z), where $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=1$
* Solar abundance: X~0.7, Y~0.28, Z~0.019
* Note that Z contains lots of different elements! (astronomers just call them all "metals")
* Observationally, usually denoted using "bracket notation":
$\left.[\mathrm{X} / \mathrm{Y}]=\log _{10}(\mathrm{X} / \mathrm{Y}) /(\mathrm{X} / \mathrm{Y})_{\text {Sun }}\right)$
where X and Y are abundances (by number) of elements (or element groups X and Y , e.g
$[\mathrm{Fe} / \mathrm{H}]=\log \left((\mathrm{N}(\mathrm{Fe}) / \mathrm{N}(\mathrm{H})) /(\mathrm{N}(\mathrm{Fe}) / \mathrm{N}(\mathrm{H}))_{\text {Sun }}\right)$
* Solar abundance: $[\mathrm{X} / \mathrm{Y}]_{\text {Sun }}=0$!
* Other notations : $12+\mathrm{N}(\mathrm{X}) / \mathrm{N}(\mathrm{H})$

Stars and Stellar Populations

* Metallicity terminology:
* What does $[\mathrm{Fe} / \mathrm{H}]=-0.3$ mean?
*What does [alpha $/ \mathrm{Fe}$] $=0.3$ mean?
* If M refers to total metals, what does $[\mathrm{M} / \mathrm{H}]=-1$ mean?

$$
[\mathrm{X} / \mathrm{Y}]=\log _{10}\left((\mathrm{X} / \mathrm{Y}) /(\mathrm{X} / \mathrm{Y})_{\text {Sun }}\right)
$$

Stars and Stellar Populations: Star clusters

- Star clusters provide clear test and validation of evolutionary models
- Star clusters are approximate "simple stellar populations (SSP)" : set of stars of single age and composition, but range of masses
- To go from theoretical HR diagram to observed color-magnitude diagram (CMD), or vice versa, need to account for distance and

HR Diagrams for Various Open Clusters reddening/extinction

Stars and Stellar Populations

* Galactic globular clusters:
* cornerstone of understanding stellar evolution historically
* in principle all stars same age and same metallicity

Stars and Stellar Populations

* Globular clusters are in principle a "simple stellar population" (SSP)
* Now recognized that some clusters are not quite so simple!
- multiple populations in clusters
- second generation stars in globular clusters observed in CMDs and in chemical abundance patterns

Piotto+2007 — https://iopscience.iop.org/article/10.1086/518503/fulltext/

Stars and Stellar Populations

* Galaxies are not simple stellar populations!
* Stars have range of ages and compositions
* HR diagrams may not look like those of star clusters, if there is a range of ages and / or metallicities

[^0]: Bressan et al. 1993

