

Getting to know the "island universes" out there.

Galaxies I

ASTR 555 Dr. Jon Holtzman

Outline for Today

- Observing Galaxies Spectroscopy:
 - Composite Spectra
 - Internal Velocities

NGC1232 (ESO)

Galaxy spectra include contributions from:

stars (multiple types!)

 what properties of a stellar atmosphere determine what its spectrum will look like?

https://www2.mpia-hd.mpg.de/homes/rix/sed.pdf

Galaxy spectra include contributions from:

* stars

- what properties of a stellar atmosphere determine what its spectrum will look like?
 - Effective temperature
 - surface gravity
 - chemical composition
 - rotation, magnetic fields
- remember evolved stars (giants!)

Thought Question

- Consider a galaxy composed of many such stars.
 - * Which type of star will be more numerous?
 - Which type of star will be more luminous?
- Will your answers above depend on when the stars in the galaxy were formed?
 - Sketch the optical spectrum for a galaxy with recent star formation vs a galaxy with only older stars

Fig. 2.12. Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals to late-type spirals, the blue continuum and emission lines become systematically stronger. For early-type galaxies, which lack hot, young stars, most of the light emerges at the longest wavelengths, where one sees absorption lines characteristic of cool K stars. In the blue, the spectrum of early-type galaxies show strong H and K absorption lines of calcium and the G band, characteristic of solar type stars. Such galaxies emit little light at wavelengths shorter than 4000 Å and have no emission lines. In contrast, late-type galaxies and starbursts emit most of their light in the blue and near-ultraviolet. This light is produced by hot young stars, which also heat and ionize the interstellar medium giving rise to strong emission lines. [Based on data kindly provided by S. Charlot]

 Galaxy spectra contain a luminosity-weighted combination of stellar spectra

Kennicutt 1992

Fig. 2.12. Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals to late-type spirals, the blue continuum and emission lines become systematically stronger. For early-type galaxies, which lack hot, young stars, most of the light emerges at the longest wavelengths, where one sees absorption lines characteristic of cool K stars. In the blue, the spectrum of early-type galaxies show strong H and K absorption lines of calcium and the G band, characteristic of solar type stars. Such galaxies emit little light at wavelengths shorter than 4000 Å and have no emission lines. In contrast, late-type galaxies and starbursts emit most of their light in the blue and near-ultraviolet. This light is produced by hot young stars, which also heat and ionize the interstellar medium giving rise to strong emission lines. [Based on data kindly provided by S. Charlot]

 Galaxy spectra contain a luminosity-weighted combination of stellar spectra

- * Galaxy spectra include contributions from:
 - * stars
 - luminosity weighted (for each type of star, number of stars times luminosity per star), absorption lines
 - * gas

Thought Question

- What happens when energetic photons from stars hit a nearby cloud of gas?
- * What effect will this have on the spectrum of a galaxy?
 - * Add to your sketch.
- * What sort of stars (and what sort of galaxy) will produce more energetic photons?

Spectroscopy: Composite Spectra

- Ionizing photons from young, hot stars are absorbed by surrounding gas
 - what energy photon is required to ionize hydrogen, and what wavelength does that correspond to?
- Recombination cascade leads to H emission lines
- Collisions lead to other emission lines (many forbidden lines)
- More prominent in galaxies with recent star formation

https://apod.nasa.gov/apod/ap101023.html

- Ionizing photons from young, hot stars are absorbed by surrounding gas
- Recombination cascade leads to H emission lines
- Collisions lead to other emission lines (many forbidden lines)
- More prominent in galaxies with recent star formation

- * Galaxy spectra include contributions from:
 - * stars
 - luminosity weighted (for each type of star, number of stars times luminosity per star), absorption lines
 - * gas
 - * emission lines of H, O, N, S, He, C, Ne,...
 - * dust

Thought Question

- * What happens to photons when they hit dust grains?
- * What happens to dust grains when they get hit by photons?
- * What effect will this have on the spectrum of a galaxy?
 - * Add to your sketch.

- Ultraviolet and optical photons are absorbed and scattered by dust grains
 - leads to dust attenuation, which is not the same as extinction/ reddening, since light can be scattered into beam as well as out

- Ultraviolet and optical photons are absorbed and scattered by dust grains
 - leads to dust *attenuation*, which is not the same as extinction/reddening, since light can be scattered into beam as well as out
- * Absorbed energy reradiated in the infrared

* Galaxy spectra include contributions from:

stars

 luminosity weighted (for each type of star, number of stars times luminosity per star), absorption lines

* gas

* emission lines of H, O, N, S, He, C, Ne,...

dust

- attenuation of UV/optical, emission of IR photons
- Star forming galaxies have typical spectra with a peak in optical and peak in mid/far-IR
- * Quiescent galaxies don't have the mid/far-IR peak
- Remember that the contributions of different components may vary with location in the galaxy!
 - so can't really talk about "the spectrum" of a galaxy, often this is obtained in some aperture, and is weighted by surface brightness
 - Note integral field spectroscopy!

One can learn about the nature of the components (stars, gas, dust) by studying the spectra

What other information can one get from spectra?

Spectroscopy: Velocities

* Spectra allow study of velocities via the Doppler shift ($\Delta\lambda/\lambda = v/c$)

- distribution of velocities of stars within a galaxy (internal velocities)
- bulk velocity of galaxy through space (mean galactic velocities)

Spectroscopy: Velocities (internal)

- Galaxy spectral lines contain contributions from multiple stars at multiple velocities:
 - F(vlos) = line-of-sight velocity distribution
 (LOSVD) of stars
 - * vlos = velocity along the line of sight
 - S = spectrum of an individual star
- Galaxy LOSVD and spectral lines usually *fairly* well represented by a Gaussian with:
 - * the **mean velocity** *v* and
 - * the velocity dispersion σ (or FWHM) FWHM = 2.354 σ
 - higher order term can and do exist!

$$\boldsymbol{I}(\lambda) \propto \int dv_{los} F(v_{los}) S(\lambda - \frac{v_{los}\lambda}{c})$$

$$\bar{v} = \int dv_{los} v_{los} F(v_{los})$$

$$\sigma^2 = \int dv_{los} (v_{los} - \bar{v}_{los})^2 F(v_{los})$$

Spectroscopy: Internal Velocities

- * Internal velocities:
 - * can be "random"
 - * can be "ordered", e.g. rotation
 - * Caveats:
 - inclination needed to
 derive intrinsic rotation
 velocity using v_{los} = v sin(i).
 - real galaxies have some of both "ordered" and "random" motion

("kinematically cold" or "rotation supported")

(b)

("kinematically hot" or "dispersion supported")

(a)

Thought Question

- Suppose the internal velocities in one galaxy are dominated by rotation and in another they are characterized by random motions:
 - What effects will this have on the spectra?
 - * How would you tell the difference observationally?

Thought Question

- Suppose the internal velocities in one galaxy are dominated by rotation and in another they are characterized by random motions:
 - What effects will this have on the spectra?
 - * How would you tell the difference observationally?

Fig. 2.4. (a) An illustration of the broadening of a spectral line by the velocity dispersion of stars in a stellar system. A telescope collects light from all stars within a cylinder through the stellar system. Each star contributes a narrow spectral line with rest frequency ν_{12} , which is Doppler shifted to a different frequency $\nu = \nu_{12} + \Delta \nu$ due to its motion along the line-of-sight. The superposition of many such line profiles produces a broadened line, with the profile given by the convolution of the original stellar spectral line and the velocity distribution of the stars in the cylinder. (b) An illustration of long-slit spectroscopy of a thin rotating disk along the major axis of the image. In the plot, the rotation speed is assumed to depend on the distance from the center as $V_{rot}(x) \approx \sqrt{x/(1+x^2)}$.

Spectroscopy: Internal Velocities

Internal velocities:

- spiral galaxies are typically rotationally dominated, i.e., kinematically cold, but not entirely so!
 - e.g., Milky Way has rotation at the Solar radius about 220 km/s, with velocity dispersion tens of km/s, depending on the population
- elliptical galaxies are kinematically hotter, but some also have some rotation

("kinematically hot" or "dispersion supported")

(a)

("kinematically cold" or "rotation supported")

(b)

Examples

- * Here are the mean velocity v and velocity dispersion σ profiles for a bunch of galaxies.
- * How do the maximum \overline{v} and σ compare to each other in each galaxy?
- * What kinds of galaxies are they?

Examples

 \overline{v} (km/s)

25

- * Here are the mean velocity v and velocity dispersion σ profiles for a bunch of galaxies.
- * How do the maximum \overline{v} and σ compare to each other in each galaxy?
- * What kinds of galaxies are they?

Noordermeer et al. 2008

Spectroscopy: Internal Velocities

- To extract information about velocity distribution need:
 - Template for the underlying spectrum
 - Instrumental broadening, i.e., the line spread function (LSF)
 - Determine velocity dispersion needed to match template to observed data, subtracting instrumental width in quadrature (assuming Gaussians), or, better, by forward modeling
- More sophisticated techniques exist,
 e.g. penalized pixel fitting (pPXF -Cappellari 2017)

Spectroscopy

What are the observational requirements for measuring velocities in galaxies?

For measuring a mean velocity, it's generally not too hard to measure the position of a line to 1/10th of a pixel, so desired accuracy leads to a requirement on the dispersion

- the accuracy also depends on the S/N and resolution
- o if you have many lines, that can substitute for lower S/N

For measuring a velocity dispersion, note that the total line width will be a quadrature sum of the velocity dispersion and the instrumental broadening profile (the LSF)

- LSF often characterized as a Gaussian and width can depend on slit width and/or seeing
- generally, might measure a line width to 10% accuracy, so might be able to measure the velocity dispersion of a galaxy to 50% of the instrumental resolution

 $FWHM = \Delta\lambda$ $R = \frac{\lambda}{\Delta\lambda}$ $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$

Observing Galaxies - Spectroscopy

What are the observational requirements for measuring velocities in galaxies?

At APO, the KOSMOS spectrograph has a maximum resolution around R=2600. What is the smallest velocity dispersion you might expect to measure?

The dispersion is about 1 Angstrom/pixel. How accurate of a velocity might you measure around the H alpha line?

$$FWHM = \Delta\lambda$$
$$R = \frac{\Delta\lambda}{\lambda}$$
$$\frac{\lambda}{\Delta\lambda} = \frac{v}{c}$$

Spectroscopy: Internal Velocities --> Masses!

- Assuming gravity is driving the motion, internal velocities tell us about the mass distribution within galaxies!
 - For of kinematically "cold" (rotationally supported) system:
 - * For kinematically "hot" systems:
 - * Mass modeling requires using the Jeans equation and knowing the velocity ellipsoid — the velocity dispersion in radial, azimuthal, and vertical directions (often unknown!) $\beta(r) \equiv (1 - \frac{\sigma_{\theta}^2 + \sigma_{\phi}^2}{2\sigma^2})$
 - * β = the velocity anisotropy:

