
ASTR 535 : Observational Techniques
Uncertainties and Error Propagation

Probability distribution functions and their statistics



Learning objectives

• Understand the concept of probability distribution functions and 
basic quantities used to describe them: mean, variance, standard 
deviation. 
• Understand the difference between population quantities and sample 

quantities.
• Understand the impact of outliers and advantages and disadvantages 

of using robust estimators



Motivation

• In most empirical science, where one is making measurements, it is critical 
to understand the uncertainty on the measurement
• Being able to predict the expected uncertainty is critical to experimental 

design
• In the case of measuring light, there are multiple sources of uncertainty

• Statistical uncertainty in counting photons, both from object and sky
• Instrumental uncertainties

• Note that uncertainty analysis is often called error analysis, and 
uncertainties are often called errors
• Distinction between random and systematic uncertainties: precision and 

accuracy



Light

• For a given incident photon flux, the detected flux in a series of 
exposures will yield a range of measured photon fluxes
• we describe this by a probability distribution function (PDF), which 

gives the relative frequency of getting different measurements for a 
given true value (which we are trying to discern)



Probability distribution functions

• PDF gives probability of getting different measurements given some 
true value. By definition

                        ∫ 𝑝 𝑥 𝑑𝑥 = 1
• PDF  can be characterized with some simple statistics
• Mean
                     𝜇 = 	∫ 𝑥	𝑝 𝑥 𝑑𝑥

• Variance  (𝜎2)  or  standard deviation (𝜎)
                    𝜎! = ∫ 𝑥	 − 𝜇 2	𝑝 𝑥 𝑑𝑥



Population vs sample statistics

• Sample statistics or, estimators of the population statistics
• Sample mean

         < x >	≡ ∑"
#

      (where 𝑥	 implies 𝑥i, the individually measured values)

• Sample variance

           𝑠$	≡ ∑ "	&	'"( !

#&)
 = 
∑"!	& ∑# !

$
#&)

• Sample mean and variance are consistent estimators, i.e. they converge to 
the population values as the number of points approaches infinity
• With finite samples, they are only estimators of the population values



Outliers and their effects

• Sample estimators may be heavily affected by outliers
• More robust estimators

• For mean:
• Median : middle value in a sorted list (perhaps average of two if N is even)
• Mode : most common value (more appropriate for discrete measurements)
• Max reject : reject highest value and take mean of rest
• Min-max reject : reject highest and lowest value and take mean of rest
• 𝜎 clipping : reject points greater/less than n-𝜎 (need to have robust value of 𝜎!)

• For standard deviation
• Mean absolute deviation   :
 

∑|&	(	)&*|
+

• Note that more robust may mean less efficient (i.e. less precise)
• E.g., uncertainty of median is 1.25x uncertainty of mean (for normal distribution, large N)





ASTR 535 : Observational Techniques
Uncertainties and Error Propagation

Some standard probability distribution functions



Learning objectives

• Understand the Poisson distribution and when it applies. 
• Know how the variance/standard deviation of the Poisson distribution 

is related to the mean of the distribution.
• Know what a Gaussian (normal) distribution is, including the full 

functional form of it. 
• Understand under what circumstances the Poisson distribution is 

similar to a normal distribution.



Probability distribution function for counting 
photons
• For photons, the PDF of observed counts given some true incident count is 

given by the Poisson distribution
• Poisson distribution is derived from the binomial distribution 

       P(x,n,p) = *!,"	()&,)
(-.#)

"! *&" !
which gives the probability of observing a particular value, x, given a total 
number of events, n, and a probability of observing x in a given event, p, 
under the assumption that events are independent
• Can derive mean and variance:
                        𝜇 = np
                        𝜎2 = np(1-p)



Poisson distribution

• For counting photons, 
• we don’t know n or p
• we know that p << 1
• we either know the mean or can estimate it by making a measurement

• In this limit, the binomial distribution approaches the Poisson distribution

            𝑃 𝑥, 𝜇 = /"	0.0

"!
• For the variance, the binomial np(1-p) for p<<1 gives:
            𝜎2 = np = 𝜇
            𝜎 = 𝜇              ß very important!



Poisson distribution

• Applies for discrete quantities
• Can’t count less than zero!
• Distribution is not symmetric, esp. for low 

means
• At high means, approaches a Gaussian 

(normal) distribution
• Poisson distribution is applicable to any 

counting experiment, and is sometimes 
called counting statistics



Gaussian (normal) distribution

• Gaussian distribution is important for several reasons
• Poisson approaches Gaussian for large mean
• Gaussian describes some other noise sources in observing, in particular, the 

instrumental noise known as readout noise
• Many quantities in nature appear to be distributed according to a normal 

distribution, perhaps due to the central limit theorem

• But certainly, not all PDFs are Gaussian!



Gaussian (normal) distribution

𝑃 𝑥, 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒
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ASTR 535 : Observational Techniques
Uncertainties and Error Propagation

Using uncertainties and confidence limits



Learning objectives

• Understand different circumstances under which you need to 
understand uncertainties and their importance
• Know how uncertainties are represented and how confidence 

intervals are used
• Understand how to assess whether a data series is consistent with a 

hypothesis and the stated uncertainties



Importance of uncertainties: applications

• Exposure time calculation : how much time is needed to bring 
uncertainties to required level
• Is observed scatter consistent with expectation?
• If not, need to revise expectation or investigate uncertainties

• Distinguish scientific hypotheses



Uncertainties

• Distribution of uncertainties is given by the probability distribution 
function of experimental outcomes
• Often simply characterized by the standard deviationà the error bar
• Interpretation of the error bar does depend on the nature of the PDF, 

but often is interpreted under the assumption of normally distributed 
uncertainties



Confidence levels

• Say you observe some 
value well off of the mean 
value
• Calculate the probability of 

getting a value as far or 
farther from the mean as a 
particular measured value
• Integrate under the 

Gaussian: the error 
function (erf)
• 1𝜎, 2𝜎, 3𝜎 results, etc.



𝜒2
• Say you have a series of 

measurements, and an assumption 
or hypothesis about the nature of 
the source, e.g., it is constant in 
time: is scatter of a set of points 
consistent with expectation?
• Can calculate chi-squared statistic

𝜒2 =
∑ 𝑜𝑏𝑠𝑖 −𝑚𝑜𝑑𝑒𝑙𝑖 2

𝜎𝑖2
• For a given number of data points, 

one can calculate probability of 
getting a particular value of	𝜒2or 
larger
• Quick estimate: reduced 𝜒2 : 𝜒𝜈2 = 
𝜒2 / dof

Where dof is the “degrees of 
freedom” = number of points minus 
number of parameters





ASTR 535 : Observational Techniques
Uncertainties and Error Propagation

Noise equation



Learning objectives

• Understand the concept of S/N and fractional error. 
• Know how S/N depends on the signal for the Poisson-limited case.
• Understand how Poisson uncertainties in the background contributes 

to the S/N of an object, and how the background contribution 
depends on both the brightness of the background but also on the 
image quality because the amount of background included in the 
measurement
• Understand readout noise and how it represented by a normal 

distribution with zero mean. Know under what circumstances readout 
noise is an important contributor to the total noise.



Signal-to-noise

• The precision of a measurement can be quantified by the fractional 
uncertainty, i.e., for signal S

                      fractional uncertainty ≡ %"	
'

• Astronomers often use the inverse of this, and call the uncertainty the 
noise, to get the signal-to-noise (S/N, SNR) of a measurement:

𝑆
𝑁
≡
𝑆
𝜎𝑆

• So, clearly, higher S/N is better, and corresponds to lower fractional 
uncertainty



Noise source: signal

• In the simplest case, the only noise source is Poisson uncertainties from the 
source itself, where 𝜎S = 𝑆,  so

𝑆
𝑁 =

𝑆
𝑆
= 𝑆

• We can break this down to see how it depends on source photon flux, 
collecting area, and exposure time given S = S’Tt

𝑆
𝑁 = 𝑆2𝑇𝑡

    but you don’t need to separately know S’, T, and t to get S/N!
• S/N scales with 𝑡
• S/N scales with 𝑆3, i.e. source brightness



Noise source: background

• In many cases, we also have to account for “background” emission
• ”background” is extended, so is a surface brightness
• Amount of “background” in a measurement depends on area of the sky in 

which source photons are collected, because one gets background over 
that area

𝐵 = 𝑇𝑡	∫
𝐵𝜆
ℎ𝑐/𝜆

𝑞𝜆𝑑𝜆

where B is a surface brightness, and the total background counts is
𝐴𝐵

where A is the area (solid angle) over which we collect source photons
We can express B in flux/solid angle and A in solid angle or, alternatively, 
express B in flux/pixel and A in pixels



Noise source: background

• Since we collect both source and background photons, the Poisson 
statistics comes from the total photons we collect:

𝜎 = 𝑆 + 𝐴𝐵
• To measure the signal from the object alone, we make a separate estimate 

of the background, B, usually by looking around the object, and subtract it 
from the measurement of the object
• Even if we measure B exactly, and subtract it off, the uncertainty arising 

from the photons we count (S+B) remains
𝑆
𝑁 =

𝑆
𝑆 + 𝐴𝐵

• This highlights the relevance of both dark skies (lower 𝐵) and sharper 
images, which allow for lower 𝐴



Noise source: background

𝑆
𝑁
=

𝑆
𝑆 + 𝐴𝐵

• Breaking out the dependence on collecting area and exposure time
𝑆
𝑁
=

𝑆(𝑇𝑡
𝑆(𝑇𝑡 + 𝐴𝐵(𝑇𝑡

• Again, S/N scales with 𝑡
• But now, S/N scales with S’ directly



Noise source: signal and background limited

𝑆
𝑁
=

𝑆
𝑆 + 𝐴𝐵

Signal-limited
𝑆
𝑁
=

𝑆
𝑆
=

𝑆(𝑇𝑡
𝑆(𝑇𝑡

= 𝑆(𝑇𝑡

Background-limited
𝑆
𝑁
=

𝑆
𝐴𝐵

=
𝑆(𝑇𝑡
𝐴𝐵(𝑇𝑡

=
𝑆′
𝐴𝐵

𝑇𝑡

Once you are background-limited, S/N drops linearly with source 
photon flux



Noise source: readout noise

• An additional source of noise arises with some types of detectors, e.g., 
CCDs, and is called readout noise, which is distributed as a normal 
distribution for each pixel with zero mean and standard deviation, 𝜎rn  
(generally called the readout noise)

𝑆
𝑁 =

𝑆
𝑆 + 𝐴𝐵 + 𝑁𝑝𝑖𝑥𝜎2𝑟𝑛

• Unlike the signal and background terms, however, the readout noise term 
does not depend on exposure time or collecting area
• In the readout noise limited case, S/N scales with S like in the background 

case
• Minimize 𝜎rn  with better detectors and electronics, and also by trying to 

ensure pixel scale is a good match to images, so Npix is minimized



What regime are different types of 
observations?
• Imaging
• Bright objects (much brighter than sky) : signal-limited
• Fainter objects : background-limited
• In optical, typical sky surface brightness ranges from 18-22 mag/square arcsec
• In near-IR, typical sky surface brightness ranges from 12-15 mag/square 

arcsec
• Image quality also matter

• Spectroscopy
• Both object and background light is dispersed (in most applications)
• Readout noise can become important, especially for short exposures
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Error propagation



Learning objectives

• Know the uncertainty (error) propagation formula and be able to 
apply it in a general case



Motivation

• say we want to make some calculations (e.g., calibration, unit 
conversion, averaging, conversion to magnitudes, calculation of 
colors, etc.) using these observations: we need to be able to estimate 
the uncertainties in the calculated quantities that depend on our 
measured quantities.
• Specific example: when we added in readout noise in the noise 

equation, why did we add the uncertainty in quadrature? 



Propagation of uncertainties

• Say you have some quantities (u,v,…) with known uncertainties (𝜎u, 
𝜎v,…) and you combine these into some new quantity, x

                          x = f(u,v,…)
   What is 𝜎x?
• If uncertainties are small:

𝑥𝑖	−	< 𝑥 >	≈ (𝑢𝑖	−	< 𝑢 >)
𝜕𝑥
𝜕𝑢

+ (vi	−	< v >)
𝜕𝑥
𝜕𝑣

   e.g.    
𝑥 = 𝑢 + 𝑣
𝑥 = 𝑢𝑣



Propagation of uncertainties

By definition, the uncertainty 𝜎x is given by

𝜎𝑥2 = lim(𝑁 → ∞)
1
𝑁
H 𝑥𝑖	−	< 𝑥 > 2

 (sample variance approaches population variance as N approaches ∞)
Substituting our expression for 𝑥𝑖	−	< 𝑥 > :

𝜎𝑥2 = lim(𝑁 → ∞) )
*
[∑ 𝑢𝑖	−	< 𝑢 > 2 (+"

+,
)2 + ∑ 𝑣𝑖	−	< 𝑣 > 2 (+"

+-
)2 +  

                                        2∑ 𝑢𝑖	−	< 𝑢 > 𝑣𝑖	−	< 𝑣 > (+"
+,

)(+"
+-

)]

	 = 	𝜎𝑢2 (
+"
+,

)2 + 𝜎𝑣2 (
+"
+-

)2 + 𝜎2𝑢𝑣 (
+"
+,

)(+"
+-

)



Covariance

Last term is the covariance:
	 𝜎𝑢𝑣2 = lim(𝑁 → ∞) )

*
[∑ 𝑢𝑖	−	< 𝑢 > 𝑣𝑖	−	< 𝑣 >

Which accounts for the possibility that the uncertainties in two 
quantities could be correlated; deviation in one quantity is correlated 
with deviation in another

If uncertainties are uncorrelated, then summing over all points, positive 
deviations in one variable, will be multiplied by equal numbers of 
positive and negative deviations in the other, so the covariance will be 
zero



Uncorrelated uncertainties

𝜎𝑥2 = 	𝜎𝑢2 (
"#
"$

)2 + 𝜎𝑣2 (
"#
"%

)2

• Some examples:
• Addition
                                 𝑥 = 𝑢 + 𝑣
                                 𝜎𝑥2 = 	𝜎𝑢2+ 	𝜎𝑣2
• Multiplication
                                𝑥 = 𝑢𝑣
                                𝜎𝑥2 = 𝑣2𝜎𝑢2+ 𝑢2𝜎𝑣2

• Logarithm
                                  𝑥 = ln 𝑢

                                  𝜎𝑥2 = #!
"

$"
   
   (note that log 𝑥 = log 𝑒 ln 𝑥)
    in logarithms, uncertainties in the log correspond to fractional uncertainties in the raw quantity



Example: readout noise

𝑆
𝑁
=

𝑆
𝑆 + 𝐴𝐵 + 𝑁𝑝𝑖𝑥𝜎2𝑟𝑛

• Without readout noise, the uncertainty from Poisson statistics (source and 
background, with perfect background subtraction) is:

𝜎𝑆 = 𝑆 + 𝐴𝐵
• Readout noise adds an additional distribution: a Gaussian with zero mean 

and standard deviation 𝜎rn for each pixel
• Summing over pixels (addition), noise adds in quadrature, to give a total 

variance of 𝑁𝑝𝑖𝑥𝜎2𝑟𝑛
• This is added to the signal, with zero mean, so total readout noise is added 

in quadrature



Distribution of resultant uncertainties

• We have characterized the uncertainty PDF with the standard 
deviation, but a given standard deviation could arise with different 
PDFs
• In general, the shape of the PDF of the derived quantity is not 

necessarily the shape of the PDF of any of the input quantities
• If two normally distributed variables are combined by addition – i.e. 

the uncertainties add in quadrature – then the resulting PDF is also 
normally distributed
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Summing and averaging measurements



Learning objectives

• Understand under what circumstances you can split exposures 
without a noise penalty, and under what circumstances you cannot. 
Understand some of the reasons why you might want to split an 
exposure into shorter pieces 
• Understand how to properly average measurements and estimate the 

uncertainty on the sample mean
• Understand how the distinction between sample variance and true 

variance can lead to biases when calculating a weighted mean, and 
how to overcome this.



Summing exposures

• Say you take multiple exposures of an object and want to sum the 
counts, Ci, given an uncertainty 𝜎 on each
• Uncertainty on the sum is 𝜎 𝑁,	 from error propagation



Summing / splitting exposures

• What about the uncertainty of a single long exposure vs the uncertainty of a series of shorter 
exposures?

• For a single exposure
𝜎 = 𝑆!𝑇𝑡 + 𝐴𝐵!𝑇𝑡 + 𝑁𝑝𝑖𝑥𝜎2𝑟𝑛

where we’ve explicitly included exposure time
• Summing N exposures

𝜎𝑁2 = 𝑁𝜎2

𝜎𝑁 = 𝑁𝑆!𝑇𝑡 + 𝑁𝐴𝐵!𝑇𝑡 + 𝑁𝑁𝑝𝑖𝑥𝜎2𝑟𝑛
• One long exposure with exposure time Nt

𝜎𝐿𝑜𝑛𝑔 = 𝑆!𝑇𝑁𝑡 + 𝐴𝐵!𝑇𝑁𝑡 + 𝑁𝑝𝑖𝑥𝜎2𝑟𝑛
Difference is only in the readout noise term, which makes sense (1 readout vs N readouts, same 
number of photons)
à If individual exposures are not readout-noise limited, then there is no noise penalty



Splitting exposures

• For long exposures, there are benefits to splitting exposures, but 
make sure that individual exposure have sufficient signal to dominate 
readout noise
• Tracking
• Monitoring of conditions
• Cosmic ray rejection
• Increasing dynamic range by avoiding saturation

• There are also some potential disadvantages
• Increased readout time
• Increased data volume



Averaging measurements

• In some circumstances, we might be in the position of wanting to 
average measurements, e.g., from a set of measurements taken with 
different exposure times, on different nights, or from different 
telescopes



Averaging measurements : equal 
uncertainties
• For a series of measurements with equal uncertainty on each, the 

maximum likelihood estimate of the population mean is the sample mean:

                 < 𝑥 >	= ∑"A
#

The variance of ∑xi is  N𝜎2

The variance of <x> is then #B
!

#! =
B!

#

The uncertainty of the mean is B
#	

= ∑ "#	&	'"(
!

#(#&))

i.e. the uncertainty goes down by the square root of the number of samples



Averaging with unequal uncertainties

• If the uncertainties are not the same on all points, the weighted mean 
provides the best estimate of the population mean:

< 𝑥 >	=
∑ 𝑥𝑖
𝜎𝑖2

∑ 1
𝜎𝑖2

Propagation of uncertainties gives the uncertainty on the weighted 
mean:

𝜎 < 𝑥 >	=

1

∑ 1
𝜎𝑖2



Weighted mean: a subtlety

• For the weighted mean, the weights, 1/𝜎i
2 use the population variances

• But we generally only have the sample variances, which are estimates of 
the population variances!
• This can lead to biases if the estimates are not determined self consistently
• Example:

•  three measurements give photon counts of 40, 50, and 60 photons 
• Considered independently, one might adopt variances of 40, 50, and 60 photons, 

respectively
• Using a weighted mean would then give a biased result, since the 40 measurement 

will be weighted more
• For three identical measurements of the same thing, you might recognize the fallacy, 

but there are certainly cases in which you would want to use a weighted mean
• Remedy: weight the measurements self-consistently!
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Random vs systematic uncertainties



Learning objectives

• Understand the distinction between random and systematic errors
• Understand how comparing observed scatter with expected scatter 

may be critical to discovering systematic errors



Random and systematic errors

• Random uncertainties describe scatter around the true value
• Systematic uncertainties describe the possibility that observed values 

are offset from the true value
• Sometimes described as precision (random scatter) and accuracy 

(offset from true value)
• Systematic uncertainties are often the most problematic as they often 

arise from unknown things
• If a source of systematics is known, one can attempt to mitigate it and/or to 

estimate its amplitude



Example: flat fielding
• Typically, imaging systems don’t have a uniform 

response across the field of view
• Non-uniformities can arise from vignetting 

in the system, non-uniform filter 
response, non-uniform detector response, 
etc.

• If this was ignored, it would lead to systematics 
as a function of position: objects in areas with 
lower sensitivity would be measured fainter

• Of course, it is not ignored: one uses a “flat 
field”, an observation of a (supposedly) 
uniformly illuminated field to calibrate out the 
non-uniform response

• But what is a “uniformly illuminate field” and 
how uniform is it?
• Any deviations from “uniformity” lead to 

systematic errors
• How can you test for this?

• One possibility: take images of the same 
object at multiple locations



Example: HST/WFPC2 CTE

• For the HST/WFPC2, calibration was done by 
observing stars that had calibrated 
magnitudes from ground-base observations

• In the resulting analysis, the scatter for 
brighter stars was larger than expected given 
the noise model (signal + background + 
readout noise)

• Looking at scatter:
• Not correlated with color 

(transformation term)
• Correlated with row position on 

detector!
• Discovery of an (iunfortunate) unforeseen 

effect: charge transfer losses!
• Discovered by comparing observed scatter 

to expected scatter!



Finding unknown systematics

• Check to see if observed scatter is consistent with known sources of 
uncertainty. 
• If not, there’s something you need to understand!
• Look for correlations of deviations with other quantities
• Don’t overestimate random uncertainties!
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Digital photometry



Learning objectives

• Understand the basic principles of doing aperture photometry on 
images
• Understand the S/N tradeoffs with aperture size depending on source 

and background brightness
• Understand the basic principles of doing crowded field photometry



Digital aperture photometry
• Find your object(s)
• For all pixels within some radius of the object (the aperture), 

sum the data values, which gives Tot = S+BA
• Radius should include a significant fraction of the light of 

the star (more later)
• For all pixels in some annulus around the object, determine a 

robust mean, B
• Annulus should cover enough area such that the 

uncertainty of the robust mean is small 
(N(annulus)>>N(aperture), otherwise you introduce 
another source of uncertainty

• Determine BA given area of aperture
• Determine readout noise given area of aperture and 𝜎rn for the 

detector
• Determine S = Tot – BA
• Determine uncertainty: N = 𝑆 + 𝐵𝐴 + 𝑁𝑝𝑖𝑥	𝜎𝑟𝑛2
• Note that, as described here, if you determine B as background 

per pixel, then A is the number of pixels in the aperture, which 
is the same as Npix

• Relatively straightforward to implement a simple prescription, 
but see also the astropy-affliciated package, photutils



Photometry
• Choice of aperture radius
• Larger gets more light
• Larger includes more 

background
• Tradeoff depends on source 

and background brightness
• Differential photometry
• If comparing to other 

object(s) in field, need 
aperture radius to provide 
consistent fraction of light 
across frame



Crowded field photometry
If there are many objects, such that they are 
“overlapping”, then digital aperture photometry 
clearly won’t work!

Here, things become more complicated
• Find stars
• Determine shape of a star (PSF) from some 

isolated star(s)
• Simultaneously fit groups of stars, solving for 

brightnesses and also centers (since your initial 
estimates may have been biased by neighbors

• Include pixel uncertainties when doing the fit
• Adopt derived parameter uncertainties 
• Implementations: DAOPHOT, DoPHOT, DolPhot, 

implementations in astropy-affiliate photutils


