
Lab 7

Hubble’s Law and the Cosmic
Distance Scale

7.1 Introduction

There are tens of satellites (moons) orbiting the planets of the solar system, a handful of
planets in orbit around the Sun, and over one hundred billion stars like the Sun which make
up our Milky Way galaxy. As we advance from satellites to planets to stars to galaxies we
note that the masses and sizes of the bodies grow tremendously, as do the distances between
them. How can we measure large distances in the Universe?

We can bounce radar signals off of solar system objects to find out how far away they lie
from Earth, and use parallax measurements to find the distances to nearby stars (taking
advantage of their apparent movements across the sky as the Earth changes its position
around the Sun). Parallax measurements have been extended to stars out to 500 light-years
by the Hipparcos satellite (and may be pushed out to 30,000 light-years, if the planned Gaia
mission succeeds). Parallax is an excellent technique for mapping the distribution of stars
within our Milky Way galaxy – but how can we chart the rest of the Universe?

As the 20th century began many astronomers thought that everything observed through
telescopes, including the numerous “spiral nebulae” like the famous faint swirl in the con-
stellation Andromeda, was contained within our Milky Way galaxy. Others argued that
spiral nebulae were separate galaxies, lying far beyond the Milky Way. The issue came to a
head in the famous Shapley-Curtis debate of 1920, illustrating the need for deeper, higher
resolution observations to answer the question. Edwin Hubble soon showed that the observ-
able Universe extends far beyond the Milky Way. He used new techniques to measure the
distances to distant objects, employing Cepheid variable stars as “standard candles”.
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An entire family of distance determination methods is based on the concept of a standard
candle. Simply put, if we can can identify a class of objects with near-identical properties
then those which appear the smallest and faintest must lie furthest away from us. If you have
ever gauged the distance to an approaching car at night from the brightness of its headlights,
you’ve used this technique! We assume that the brightness of these objects obeys an inverse
square law, being inversely proportional to the square of the distance (F ∝ 1/d2), and that
their apparent size varies inversely with distance (θ ∝ 1/d). If your standard candle is a
100-watt light bulb, for example, then if it shifts to a position twice as far away from you it
will appear one-fourth as bright (like a 25-watt bulb would at its initial position).

Cepheid variable stars are important examples of standard candles, used to determine accu-
rate distances to stars within the Milky Way and within nearby galaxies like the Andromeda
galaxy. The amount of light output by these massive stars can vary by a factor of two or
three, over a regular period of time extending from a few days to a few months. In 1908,
Henrietta Leavitt discovered that this period of variability was determined by the intrinsic
luminosity of the star – the more energy the star pumped out, the longer it took to vary
from bright to faint and back to bright again, like clockwork. The brightest of these stars
are 10,000 times more luminous than the Sun, so they can be seen from quite a distance.

With modern telescopes, we can observe Cepheid variable stars out to 30 megaparsecs (Mpc),
or 100 million light-years. This allows us to determine distances to galaxies hosting such stars
which lie within 30 Mpc of the Milky Way, covering a number of nearby isolated galaxies,
groups of galaxies, and even the closest large galaxy clusters like Virgo, containing hundreds
of galaxies. Thirty megaparsecs might seem like a large distance (equal to 300 times the
size of the Milky Way), but in the grand scheme of things it barely covers our own cosmic
backyard.

We can employ this technique at larger distances by finding brighter standard candles, in
the form of supernovae. Type Ia supernovae are stars which (for a brief period of time)
can be as bright as an entire galaxy. They occur as part of the end-state process for low-
mass white dwarf stars, when mass accreted from a stellar companion (a second star) fuels
a short, immense explosion. These objects consistently achieve a known peak luminosity,
and thus when we observe them we know how far away they lie. (As they are all the same
intrinsic brightness, the further they lie from Earth the fainter they appear.) The most
distant supernovae studied lie an amazing 1,700 Mpc away from us.

Supernovae explosions are wonderful probes of the distant Universe, but they are rare and
can be difficult to find. We thus employ additional techniques to measure the distances to
many galaxies, taking advantage of the known properties of the galaxies themselves. We will
explore some of these techniques within this laboratory exercise. Within large clusters of
galaxies (home to hundreds or even thousands of galaxies), one almost always finds a bright
elliptical galaxy in the center of the cluster. These brightest cluster galaxies (BCGs) have
remarkably consistent intrinsic properties. Because they lurk in the cores of clusters and
consume unwary interlopers (yes, it’s a dog-eat-dog world, and large galaxies are literally
cannibals), they tend to grow to a certain size and give off a certain amount of energy.
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These galaxies exhibit uniform properties, meaning that they are they appear to be the
same size and emit the same amount of energy when viewed from the same distance. (They
are standard candles in a sense, but they vary too much to truly deserve the name. You
might think of them as sub-standard candles built in a galactic factory, one with no routine
inspections or quality controls.)

We will also estimate distances to galaxies using a cosmological method based on a discovery
made by Edwin Hubble in 1930. While determining the distances to nearby galaxies, he
realized that the derived distances correlated with another observable property – the velocity
at which the galaxies appeared to recede. Hubble plotted recessional velocity v as a function
of distance d, as shown in Figure 7.1, and discovered that the most distant galaxies are
also moving the fastest. We call this relationship Hubble’s Law, and these diagrams Hubble
diagrams, to honor his insight.

Figure 7.1: Hubble diagram showing Edwin Hubble’s original data set (left), and modern
data (right) extending out to larger distances. The x-axis shows the distances to nearby
galaxies determined by a variety of methods, and the y-axis shows their recessional velocities.
The slope of a line fit to the data has units of y over x, or km sec−1 per Mpc, and is called
the Hubble constant (H0).

We interpret these recessional velocities as evidence that the entire Universe is expanding
outward (the distances between all galaxies increases with time). We do not assume that we
are situated at the center of the Universe and everything is moving away from us, having
learned from our previous “the Earth is the center of the world” phase (so 16th century).

We can fit the slope (the change in y over the change in x) of the data in Figure 7.1, and find
the relationship between distance d and velocity v. We call this slope value H0 (the Hubble
constant) in honor of Edwin Hubble, where

H0 =
v

d
, and so v = H0 d. (7.1)
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The current accepted value of H0 is 72 km sec−1 per Mpc. We can also solve this equation
for d, so if we know the velocity v of a nearby galaxy, then it lies at a distance d such that

d =
v

H0

. (7.2)

We will examine several Hubble diagrams in this laboratory exercise, determining the dis-
tances to galaxies by measuring changes to their spectra due to recessional velocities.

7.1.1 Goals

The primary goals of this lab are to appreciate that the Universe is expanding, and to
understand and evaluate various techniques for determining distances to galaxies.

7.1.2 Materials

All online lab exercise components can be reached from the GEAS project lab URL.

http://astronomy.nmsu.edu/geas/labs/labs.html

You will also need a computer with an internet connection, and a calculator (or calculator
app).

7.1.3 Primary Tasks

You will study Hubble diagrams based on Cepheid variable star data and Type Ia supernovae
observations. You will then measure the apparent sizes and fluxes for a sample of brightest
cluster galaxies (BCGs), and compare the derived distances with those that you find from
redshifted spectra.

7.1.4 Grading Scheme

There are 100 points available for completing the exercise and submitting the lab report
perfectly. They are allotted as shown below, with set numbers of points being awarded for
individual questions and tasks within each section. Note that §7.9 contains 5 extra credit
points.

Table 7.1: Breakdown of Points
Activity Hubble diagrams Distances Comparisons Questions Summary
Section §7.3.1, §7.3.2, §7.4 §7.5 §7.7 §7.8
Page 9, 12 15 21 26 28
Points 14 27 22 13 24
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7.1.5 Timeline

Week 1: Read sections §7.1–§7.4, complete activities in §7.3 and §7.4, and begin final (Post-
Lab) questions in §7.7.

Week 2: Read §7.5–§7.6, complete activities in §7.5, finish final (Post-Lab) questions in §7.7,
write lab summary, and submit completed lab report.

7.2 Determining Galaxy Redshifts and Velocities from

Spectra

A Hubble diagram shows the distances to galaxies versus their recessional velocities (how
quickly they and the Milky Way are separating from each other). We can determine these
velocities by examining galaxy spectra and determining redshifts. Let’s walk through this
process, explaining our terms as we go.

If you’ve ever listened to the siren of a speeding police car, ambulance, or fire truck, you’ve
heard the high-pitched sound as it approaches you drop to a lower frequency as it passes by
and recedes. This “Doppler Effect” is due to successive sound waves from the approaching
source piling up in time (as each new wave travels a shorter distance to reach you), so that
your ear absorbs more of them with every second. Once the siren starts to move away from
you, the sound waves start to space out again (as they have to cover more and more ground
to reach you) and the siren seems to drop in pitch.

Light waves undergo a similar effect. While it’s most natural to talk about sound waves
changing in pitch (or frequency), the analogous effect for light waves is typically described
as a change in wavelength. We detect visual light emitted from approaching sources to be
shifted in wavelength toward the blue end of the spectrum, and we find light from sources
moving away from us to be redshifted to longer wavelengths. The amplitude of the shift is
defined by a change in wavelength, ∆λ. The ratio of ∆λ to the original wavelength of the
light (called λrest, as it is emitted by a source at rest with respect to an observer) is defined
as redshift (z). We can write this as an equation:

z =
∆λ

λrest

. (7.3)

The redshift z is the change in wavelength of a spectral feature, relative to its wavelength
at rest. The larger the redshift, the faster the object is moving away from the observer.

Example 7.1

Hydrogen is the most common element in the Universe, and so the stars and gas clouds within
galaxies frequently absorb or emit light at the wavelengths at which hydrogen atoms absorb
and emit radiation. The hydrogen beta (Hβ) line is one such feature, found at a wavelength
corresponding to blue-green light. In an object at rest with respect to an observer, this line
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is observed at its rest wavelength of 4861Å (we say λrest = 4861Å). Suppose that we observe
the Hβ line in the spectrum of a galaxy and it appears instead at a wavelength of 5347Å
(λobs = 5347Å). The observed wavelength is longer, as the light from the galaxy is being
redshifted to longer wavelengths. To determine the galaxy redshift, we first need to find the
change in wavelength, ∆λ. We recognize that

∆λ = λobs − λrest = 5347Å− 4861Å = 486Å. (7.4)

How large a shift is 486Å? Remember that the range of the human eye extends from violet
down to red wavelengths, covering roughly 3,500Å. A shift of 486Å would turn a blue beam
of light to green, or yellow light to orange – a noticeable effect.

Dividing by ∆λ by λrest, we see that the redshift for this object is

z =
λobs − λrest

λrest

=
∆λ

λrest

=
486Å

4861Å
= 0.10. (7.5)

Example 7.2

At speeds much less than the speed of light (redshifts z ≤ 0.10), the redshift of a galaxy is
equivalent to its velocity v in units of the speed of light, c. We say that z = v/c, so the
velocity of the galaxy relative to an observer is

v = z × c = z × 300, 000 km sec−1 (7.6)

as the speed of light, c, is 300,000 km sec−1.

How quickly is the galaxy described in Example 7.1 moving away from us? With a redshift
of 0.10,

v = z × c = 0.10 × 300, 000 km sec−1 = 30, 000 km sec−1. (7.7)

Due to the overall expansion of the Universe, this galaxy and the Milky Way are separating
at one-tenth the speed of light!

Recall that the “spectrum” of a galaxy is simply a plot of the amount of light that it emits as a
function of wavelength. A continuous (or continuum) spectrum is one which varies smoothly
and slowly as a function of wavelength, appearing in the visual as a rainbow containing all
of the saturated colors. Imagine that there was a sudden gap in a continuum spectrum,
where the light was removed at a particular wavelength. We would say that it contained
an “absorption” feature because light had been absorbed out at that wavelength, leaving
an empty dark space. When we observe stars, we often observe a gap at the wavelength of
the Hβ line, where hydrogen in the stellar atmosphere has absorbed photons emitted by the
stellar core.

Example 7.3

Consider the spectrum of a galaxy at a redshift z ≈ 0.10 (z = 0.095), shown in Figure 7.2. We
have marked seven significant absorption and emission lines in this spectrum, and identified
the elements responsible for them (hydrogen, oxygen, magnesium, sodium, and sulfur). The
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Figure 7.2: The optical spectrum of a nearby galaxy, observed by the Sloan Digital Sky
Survey (SDSS). This plot shows the amount of light emitted by the galaxy as a function of
wavelength. The spectrum has a smooth underlying shape which rises gently toward longer
(redder) wavelengths, with emission and absorption features superimposed on top of it at
particular wavelengths. We have identified several of these key features by name: the oxygen
[OII] line, the hydrogen Balmer lines Hγ, Hβ, and Hα, the magnesium Mg I line, the sodium
Na line, and the sulfur [S II] line. As we know the rest wavelengths of these lines, by finding
their observed wavelengths we can determine the redshift of the galaxy.

presence of these lines tells us that these elements are present in this galaxy. Note how,
at each of the marked wavelengths, there is either a peak or a drop in the spectral flux,
indicating an emission or absorption feature. Find the Hβ line, and determine its observed
wavelength along the x-axis – if you estimated a value around 5325Å, you did well! We
determined in Example 7.1 that a galaxy with a redshift of 0.10 should show the Hβ line
at a wavelength of 5347Å, so we can tell that this galaxy has a redshift slightly lower than
0.10.

In this laboratory exercise, you will compare real galaxy spectra like this to a rest-frame
spectrum showing the wavelengths and intensities of various features as they would appear
in a galaxy at rest with respect to our Milky Way galaxy. You will align the spectra by
shifting the rest-frame spectrum back and forth in wavelength to match the observed galaxy
spectrum, in order to determine its redshift, as described in Figure 7.3.
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Figure 7.3: The optical spectrum of a nearby galaxy observed by the SDSS, and a spectrum
of a similar galaxy as it would appear at rest with respect to us. We can align the spectra
by moving the rest-frame spectrum rightwards, shifting each feature to longer wavelengths.
Can you find the 4861Å Hβ line, the 5173Å magnesium (Mg) line, and the 5893Å sodium
(Na) line in the observed spectrum? What is the approximate redshift of this galaxy?

7.3 Constructing Hubble diagrams

We will now examine Hubble diagrams based on distances to galaxies drawn from Cepheid
variable stars and from Type Ia supernovae, and recessional velocities measured from galaxy
spectra. As you examine the relationship between distance and velocity, think about the
quality of the fit to the data points.

If all of the data points were to fall exactly along the best-fit line, what would that mean? It
would suggest that the observational data were of extremely high quality, and also that the
model represented by the line (see equation 7.1) encapsulated all of the relevant physics gov-
erning the relationship between galaxy distances and velocities. If the data points appeared
to be scattered randomly, what would that mean? It would suggest that the observational
data were corrupted (damaged) or of vastly substandard quality, and/or that the hypothesis
behind our physical model was not correct.

As with many things in life, the reality of the situation lies between the extremes. We observe
a certain amount of scatter within the distance–velocity relationship, but the underlying
connection is clearly present. A correlation coefficient (R, varying between 100% if y can be
completely predicted from x and 0% for no connection) can help us to quantify the level of
agreement between the plotted variables.
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What are the primary causes of the scatter (noise) in these Hubble diagrams? First, the
difficulty in determining accurate distances (and velocities) for these galaxies can produce
data-driven offsets from an underlying theoretical relation. Second, there are additional
factors that can affect the relationship between distance and velocity, factors not included in
the Hubble Law. Some neighboring galaxies exhibit negative rather than positive velocities,
because at short distances the attractive force of gravity can overwhelm the universal force of
expansion. Galaxies within clusters can also have anomalous velocities because they dive into
the cluster cores at high speeds relative to their nearest neighbors, drawn by the massive bulk
of the cluster itself. Third, at large distances (beyond 400 Mpc) the relationship between
velocity and distance becomes more complicated, due to cosmological factors related to the
curvature of the Universe (space is not completely flat on large size scales).

7.3.1 A Hubble Diagram for Nearby Galaxies with Cepheids

Let’s work through an example concerning Cepheid variable star data, to better understand
how to derive distances to these types of stars.

Example 7.4

In Examples 7.1 through 7.3 we discussed how to determine redshifts for galaxies based on
spectral features. We can combine such velocities with distances derived for Cepheid variable
stars within the same galaxies to create Hubble diagrams. Figure 7.4 shows six successive
images of a single Cepheid star within the galaxy M100, observed repeatedly over a two-
month period with the Hubble Space Telescope. Note how the star dims and then brightens
over time. It appeared rather bright on April 23, fainter on May 4, and was barely visible
on May 9. By May 16 it had begun to brighten again, in a pattern that repeats every 53
days. Twenty such stars were observed within this galaxy, and a distance was derived by
averaging the results of analyzing each star’s light curve (see Figure 7.5).

Because Cepheid variable stars which are intrinsically brighter (which emit more light) have
longer periods of variability, we can determine how far such a star lies from Earth by com-
paring its observed flux with that predicted from various distances. We simply shift the star
back and forth across the Universe until its observed flux matches the light level predicted
for a star with its period of variability at that distance. The longer the period, the more
light the star emits, and the further it must lie from Earth.

Figure 7.6 combines distances from Cepheid stars observed within 23 galaxies, plotting them
against recessional velocities derived from the galaxy spectra. The most distant galaxies
in the sample have spectral lines which are redshifted the farthest to longer (redder) wave-
lengths. Because Cepheid stars in all of the galaxies have the same properties, we can use
them to determine distances in a uniform fashion.

1. Complete the following statements after studying Figure 7.6. (3 points)

(a) The galaxy M100 is one of the most ( nearby / distant ) galaxies for which Cepheid-
derived distances are shown.
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Figure 7.4: Six images of a variable star in the galaxy M100, taken by the Hubble Space
Telescope over a two-month period in 1994. Observe how the variable star, centered in each
frame, grows fainter and then brighter over time.

Figure 7.5: The light curve for a variable star in the galaxy M100, showing the change in flux
over time. A flux value of 100% corresponds to the average brightness. The star doubles in
brightness during each periodic variation and then decays again, taking 53 days to complete
the pattern. Intrinsically brighter stars have longer periods of variability.
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Figure 7.6: A Hubble diagram showing the relationship between galaxy distance and re-
cessional velocity, where distances were derived from the period-luminosity relationship for
Cepheid variable stars identified within each galaxy. The M100 point is circled in red, and
based in part on the data shown in Figures 7.4 and 7.5. The slope of the relationship is 79
± 4 km sec−1 per Mpc, and the correlation coefficient R is 78%, indicating that there is a
strong positive relationship between velocity and distance.

(b) A galaxy lying 10 Mpc away from us should have a recessional velocity of roughly

. (Please attach units to your value.)

(c) The modern value for H0 derived here is much ( higher / lower ), by a factor of roughly

, than that found in Hubble’s original data (shown in Figure 7.1).
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Figure 7.7: The light curve for a second variable star in the galaxy M100. What is the
period of variability for this star? Is it intrinsically brighter or fainter than the star shown
in Figure 7.5?

2. Figure 7.7 shows the light curve for a second Cepheid variable star in the M100 galaxy.
(2 points)

(a) The period of variability for this star is (to the nearest day or two).

(b) This star is intrinsically ( brighter / fainter ) than the one shown in Figure 7.5.

7.3.2 A Hubble Diagram for More Distant Galaxies with Type Ia
Supernovae

Variable stars are too faint to be observed beyond distances of 30 Mpc, but supernovae explo-
sions can be detected out to 1,700 Mpc (over a considerable fraction of the known Universe).
Figure 7.8 is a Hubble diagram constructed from galaxy distances based on individual super-
novae events. When we compare it to Figure 7.6, we notice immediately that it extends out
more than ten times further in distance and has a much higher correlation coefficient (the
relationship between d and v is less noisy). Given the increased range (supernovae can be
detected from much farther away, because they are so much brighter) and higher correlation
coefficient, why don’t we just use the supernovae technique to find distances to all galaxies?

The key point to consider is that the brighter supernovae are much easier to detect than
Cepheid variable stars, when they are present. Astronomers have found more than fifty
Cepheid variable stars in M100 alone, and they are even easier to find in galaxies which lie
closer to the Milky Way. Once a Cepheid star has been identified, we can derive its distance
by observing it as few as ten times over a several-month period to determine its period of

12



variability and apparent brightness. If we later discovered an error in the observations, we
could go back at any time to repeat them.

A supernovae explosion occurs once in every hundred years per galaxy, however, and lasts
for only a handful of days. They are rare events, and so we have observed very few of them
nearby. Imagine the space surrounding the Milky Way galaxy as a series of nested concentric
spherical shells, each one larger than the next. Because each successive shell has a larger
radius and lies farther from the Milky Way, it contains a larger volume and holds more
galaxies. The odds of our detecting a supernovae in our lifetimes actually increase if we look
further away from the Milky Way, even though the supernovae become fainter, just because
there are more galaxies available at larger distances to host them.

Figure 7.8: A Hubble diagram showing the relationship between galaxy distance and re-
cessional velocity, where distances were derived from the observed peak luminosities for
supernovae observed within each galaxy. The slope of the relationship is 71.7 ± 0.8 km
sec−1 per Mpc and the correlation coefficient R is 99%, indicating that there is a very strong
positive relationship between velocity and distance.

1. What is the redshift z for the most distant galaxy shown in Figure 7.8? (1 point)

2. Figures 7.6 and 7.8 illustrate the process of deriving values for the Hubble constant (H0)
from samples of galaxies containing Cepheid variable stars and supernovae. In each case, is
the derived value for H0 consistent with the accepted value of 72 km sec−1 per Mpc? (Are
the differences more or less than 2σ?) Please show your work. (3 points)
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3. How many galaxies appear in Figure 7.6 and also appear in Figure 7.8? Why might
even a small number of galaxies in which we had detected both Cepheid variable stars and a
supernovae be of particular interest? (Hint: How do we know that these distance estimation
techniques are accurate?) (1 point)

4. How many supernovae could have been seen in the nearest 10 galaxies since the telescope
was invented in 1600? How many could have been observed with modern telescopes and
recording devices (over the last 30 years)? (3 points)

5. There is an unwritten rule of courtesy among astronomers that if a supernovae occurs
nearby, anyone with time on a major telescope in the next few days observes it and circulates
the images worldwide. Why do you think we do this? (1 point)
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7.4 Brightest Cluster Galaxies as Distance Indicators

We refer to the brightest galaxy in a cluster of hundreds (or even thousands) of galaxies as
a BCG. For example, the giant elliptical galaxy known as M87 is the BCG in the nearest
large cluster of galaxies, a dense grouping of over 1,300 galaxies known as the Virgo Cluster.
You will examine a series of images of BCGs taken by the Sloan Digital Sky Survey (SDSS).
The BCG will appear at the center of each image, surrounded by other fuzzy amber-colored
galaxies within the same cluster.

We will determine the distances to BCGs three different ways, determining a “D-size” dis-
tance based on the angular size of each galaxy, a “D-flux” distance based on the measured
brightness of each galaxy, and a “D-z” distance based on the galaxy redshift. The following
three examples will help us to better understand how each distance is determined.

Example 7.5

We can use the apparent (observed) sizes of BCGs to determine how far away they are, by
assuming that these galaxies are all the same actual size. Galaxies which appear larger must
then lie closer to us, and those which appear smaller must lie at greater distances. We say
that the relationship between the apparent size θ and distance D-size is

θ ∝
1

D-size
. (7.8)

For nearby galaxies, a galaxy which is twice as far away looks half as big, while one which is
half as far away appears twice as large. Let’s assume that all BCGs are 20 kiloparsecs (kpc)
in size, 130% the size of the Milky Way. A BCG at a distance of 50 Mpc would then have
an angular radius of 82′′ (82 arcseconds, where there are 3,600 arcseconds in a degree), while
one at 100 Mpc would have a size of 41′′.

D-size

50
=

82

θ
(7.9)

where D-size is measured in units of megaparsecs and θ in units of arcseconds, so that

D-size (Mpc) =
4, 100

θ(′′)
. (7.10)

As we examine galaxies at larger distances (above 400 Mpc), the relationship between an-
gular size and distance becomes slightly more complex, because we have to take into effect
cosmological factors (space is curved, and the Universe was smaller in the past). These
are small corrections, however. Of more importance is the fact that all BCGs are not the
exact same size. If a particular galaxy is smaller than 20 kpc in size, for example, we will
overestimate the distance to it with this technique.

Example 7.6

We can also use the apparent (observed) brightnesses of BCGs to determine how far away
they are, by assuming that these galaxies all emit the same amount of light. Galaxies which
appear brighter must then lie closer to us, and those which appear fainter must lie at greater
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distances. We say that the relationship between the apparent brightness f and distance
D-flux is

f ∝
1

D-flux2
, or

√

f =
1

D-flux
. (7.11)

For nearby galaxies, a galaxy which is twice as far away looks four times fainter, while one
which is half as far away appears one-fourth as bright. Let’s assume that all BCGs are three
times brighter than the Milky Way. A BCG at a distance of 50 Mpc would then be observed
to add 2,120,000 counts to our calibrated SDSS images, while one at 100 Mpc would add
only 530,000 counts. (Each “count” in the calibrated images corresponds to a number of
photons detected at the telescope.)

D-flux

50
=

√

2, 120, 000

f
(7.12)

where D-flux is measured in units of megaparsecs and f in units of counts, so that

D-flux (Mpc) =

√

√

√

√

5.30× 109

f(counts)
. (7.13)

As we examine galaxies at larger distances, the relationship between flux and distance also
becomes slightly more complex due to cosmological effects, but these are still small correc-
tions. The fact that all BCGs are not equally bright is much more important. If a particular
galaxy gives off more light than expected, for example, we will underestimate the distance
to it with this technique.

Example 7.7

We can use the observed redshifts of BCGs to determine how far away they are, by assuming
that the Universe is expanding. Galaxies with smaller redshifts must then lie closer to us,
and those with larger redshifts must lie at greater distances. We say that the relationship
between the redshift z and distance D-z is

z ∝ D-z. (7.14)

For nearby galaxies, a galaxy which is twice as far away has twice as large a redshift, while
one which is half as far away has half as large a redshift. The critical difference between
this technique and those for D-size and D-flux, however, is that we don’t need to make any
assumptions about the physical properties of the galaxy in order to determine its distance
from its redshift. From Hubble’s Law, we know that

v = H0 ×D-z, and as z =
v

c
, z =

H0

c
×D-z. (7.15)

A BCG at a distance of 50 Mpc would then have a redshift of 0.012, while one at 100 Mpc
would have a redshift of 0.024.

D-z

50
=

z

0.012
(7.16)
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where D-z is measured in units of megaparsecs and z is dimensionless, so that

D-z (Mpc) =
c

H0

z = 4, 200 z. (7.17)

As we examine galaxies at larger distances (z > 0.10, beyond 400 Mpc), the relationship
between redshift and distance becomes slightly more complex, because we again have to
factor in cosmological effects.

7.4.1 Finding Distances to Brightest Cluster Galaxies

We are going to estimate the distances to 34 BCGs, using images and spectra from the Sloan
Digital Sky Survey (SDSS). You will estimate D-size, D-flux, and D-z for ten galaxies, and
then combine your results with measurements that we have already made for another 24
galaxies.

Measuring D-size and D-flux from Galaxy Images

Reload the GEAS project lab exercise web page (see the URL on page 4 in §7.1.2), and click
on the link for this exercise labeled “Web application #1 (galaxy distances I).”

We will now measure the angular sizes of our BCGs, by fitting an ellipse of appropriate
size and orientation to each one of them. As we do so, we’ll also measure the amount of
light contained within this elliptical aperture to see how bright they are. We’ll assume that
each one of the galaxies has a radius of 20 kpc and would produce 2,120,000 counts in our
images at a distance of 50 Mpc, and calculate distances accordingly. (This calculation will
differ slightly from the simplified models presented in Examples 7.6 through 7.7 to take in
to account cosmological effects, but the basic idea will be the same.)

Imaging Tool Tips

The image tool interface contains five primary panels, as well as a set of key options across
the top of the screen. Start by clicking on the button labeled “Help” to learn about the basic
properties of the tool. The three top panels all have to do with the image of the galaxy.
The left panel contains the controls to adjust the position, size, and orientation of the green
ellipse on top of the galaxy image shown in the middle panel. Each image is 100′′ arcseconds
wide, so if a particular central BCG pictured appears smaller than the others that means
that it would appear smaller on the sky as well (the images are all the same size). The right
panel shows the distribution of light within the ellipse. It is split in half along its shortest
dimension, called the minor axis, so if you have centered it properly on the galaxy the radial
plot should appear symmetric about the point x = 0.

The bottom two panels contain a table of galaxy properties, including the position of the
ellipse on the image, its position angle (0◦ for a tall ellipse and 90◦ for a fat one), its axial
ratio (0 for a skinny ellipse, 1 for a circular one), the length of the semi-major axis (the
longest radius you can fit into the ellipse), D-size based on the semi-major axis, the amount
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of light contained within the ellipse, and D-flux based on the light. On the right we have
the spectrum of each galaxy. As you work with each image, examine the spectrum as well
to see if there are any correlations – can you make any predictions about the spectra based
on the images, or vice versa?

1. Once in a great while, a network error will interfere with the loading of one of the galaxy
images in this tool. A warning message will appear when you first load the tool if this occurs.
If this happens to you, force your browser to reload the application (most will do so if you
hold down the control key or the shift key while reloading the page). If you do not do this,
then at least one of your radial plots will not contain any data and you will not be able to
complete this exercise.

2. Examine the presence of the green ellipse on top of the image of Galaxy #1. We can vary
its eccentricity by changing the axial ratio in the Control Panel, and rotate it in place by
changing the position angle. The four arrows shift the ellipse left or right and up or down,
and the two buttons to their right make the ellipse grow bigger or smaller. Try changing all
of the setting in the Control Panel until you are confident that you understand how they
work.

3. Select “hide ellipse” from the list of options at the top of the screen and then “zoom in”
to inspect the galaxy image more closely. Then select “show ellipse” to draw the elliptical
aperture again.

4. Decide whether the galaxy is more oval or more round, and set the axial ratio for the
ellipse accordingly (0 for very elongated, 1 for round). Identify the longest axis of the galaxy,
and rotate the ellipse to match by varying its position angle.

5. Use the four position arrows to move the aperture around so that its center coincides
with the center of the galaxy (the bright core).

6. Use the two remaining arrows on the Control Panel to increase or decrease the size of the
ellipse. Your goal is to have the aperture contain all of the light from the galaxy, including
its faint (nearly-invisible) outer regions, and a minimum of light from foreground Milky Way
stars, other galaxies, and the background sky.

7. Use the radial distribution of counts plot to finalize the aperture. Make the aperture large
enough that the counts are distributed symmetrically on either side of the central position
(where x = 0). Set the size so that the boundaries (shown as two green vertical lines on the
counts plot) are placed where the number of counts starts to rise noticeably upward relative
to the background level. You may sometimes need to decrease the aperture size to keep a
foreground star or another galaxy outside of the ellipse; sometime you can avoid doing this
by instead changing its position angle.

8. Steps 6 and 7 above involve making difficult decisions, and compromising your desire to
include all of the galaxy flux with your need to include as little as possible of the light from
other stars and galaxies. The key is to be consistent in your approach and to treat all ten
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galaxies uniformly. Try to place the ellipse to mark the same brightness level on all images,
as best you can. For some galaxies there will be no “perfect” solution; we have given you
some difficult cases to consider to illustrate the type of decisions that are often made when
dealing with real astronomical data. Read through the following questions before you fit the
galaxy images, and keep them in mind as you work. When finished, you’ll have two different
distance determinations (D-size and D-flux) for all ten galaxies, based on their apparent sizes
and apparent brightness.

1. Save a copy of the final galaxy data table and include it in your lab report. (7 points)

2. Save a copy of the image for Galaxy #10 and include it in your lab report. (1 point)

3. As you decrease the size of the elliptical aperture on a galaxy image, D-size ( increases
/ decreases / remains constant ) and D-flux ( increases / decreases / remains constant ).
(1 point)

4. If the size of a galaxy is over-estimated (the aperture is larger than the galaxy), D-size
will be ( too large / too small ). (1 point)

5. If the size of a galaxy is under-estimated (the aperture is smaller than the galaxy), D-flux
will be ( too large / too small ). (1 point)

6. Most of the light from the galaxies is uniformly distributed in smooth ellipses around the
cores. Why is there a second peak in the radial counts plot for Galaxy #6? (1 point)

7. Which of the ten galaxies posed the largest challenges to fit? Which was the easiest to
analyze? Explain your choices. (2 points)

Measuring D-z from Galaxy Spectra

Reload the GEAS project lab exercise web page, and click on the link for this exercise labeled
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“Web application #2 (galaxy distances II).”

We will now measure the redshifts of our BCGs, by taking a rest-frame spectrum of a typical
BCG (the spectrum as it would appear for a galaxy at rest with respect to the Milky Way)
and redshifting it ourselves to match the spectrum of each of our ten BCGs. (The calculation
of D-z will differ slightly from the simplified model presented in Example 7.8, to take in to
account cosmological effects, but the basic idea will be the same.)

Spectral Tool Tips

The spectral tool interface contains four primary panels, as well as a set of key options across
the top of the screen. Start by clicking on the button labeled “Help” to learn about the basic
properties of the tool. The largest panel (on the left) shows the spectrum of each galaxy (in
pale green) and the rest-frame spectrum of a typical BCG (in pale blue). The controls at the
bottom of the panel allow you to shift the rest-frame spectrum left and right (by defining a
redshift for it) until it matches up with the observed spectrum.

Use the slider bar to set an approximate value, and then “touch up” the redshift with
the more delicate button controls on either side. Note that several strong emission and
absorption features have been marked by element in the rest-frame spectrum (Fe for iron,
Ca for calcium, Hα through Hδ for hydrogen, Mg for magnesium, and Na for sodium). If
these features are strong, then these elements are present in the galaxy.

You can position the rest-frame spectrum two ways: either pay attention to the broad,
underlying shape of the continuum (the overall shape of the spectrum), or select the deepest
absorption lines in the two spectra and match them up. To fine-tune your redshift value, use
the outermost redshift button controls to make small shifts until the correlation coefficient
(R) is maximized. When this value, printed next to the redshift on the bottom of the panel,
is as close to 100% as possible, you will have found the best redshift for the galaxy. The
second panel (from left to right) is a visual representation of the correlation coefficient – try
to raise the value of the “correlation thermometer” all the way (to 100%) in each case.

A data table on the right records the galaxy redshifts and derived distances D-z, as well as
the final correlation coefficients. In the lower right corner you will find an image of each
galaxy. Keep an eye on the images as you fit the spectra, and try to identify trends that you
see between the two types of data.

Read through the following questions before you fit the galaxy spectra, and keep them in
mind as you work. When finished, you’ll have a third distance determination (D-z) for all
ten galaxies, based on their redshifts.

1. Save a copy of the final galaxy data table and include it in your lab report. (7 points)

2. Save a copy of the spectrum for Galaxy #9 and include it in your lab report. Are you
more confident in your estimates of D-z or of D-size and D-flux for this galaxy? Why? (2
points)
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3. As you increase the redshift for a galaxy spectrum, D-z ( increases / decreases / remains
constant ). (1 point)

4. More distant galaxies appear ( smaller / larger ) on the images, and their spectra shift to
the ( left / right ) to ( shorter / longer ) wavelengths. (1 point)

5. Which of the ten galaxies posed the largest challenges in determining redshifts? Which
was the easiest to fit? Explain your choices. (2 points)

7.5 How Reliable Are Your Distance Determinations?

Which of the three distance estimates for BCGs, D-size based on angular size, D-flux based on
apparent brightness, and D-z based on redshift, is the most accurate? Review Examples 7.5–
7.7 on pages 15–16, and complete the questions below to explore this topic.

7.5.1 Evaluating Distances Based on Apparent Sizes of BCGs

As Example 7.5 explains, to determine the distances to BCGs from their angular sizes (their
apparent sizes on the sky) we must assume that they are all the same actual size. (If viewed
from the same distance, they would all appear equally large.) Is this a good assumption?
Figure 7.9 shows the distribution of galaxy sizes throughout the sample.

1. Two-thirds of the BCGs will lie within 1σ of the mean size, between kpc

and kpc. For the remaining third, our D-size distance estimates would be
more than 30% too low or more than 66% too high (see Example 7.5). (1 point)
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Figure 7.9: This histogram (left) shows the distribution of physical sizes within our sample
of 34 BCGs. Semi-major axes are plotted in units of kiloparsecs (kpc), with an average value
of 20 ± 8 kpc. The figure on the right illustrates the definition of the semi-major axis for an
ellipse (the largest radial length you can fit inside it).

7.5.2 Evaluating Distances Based on Apparent Brightnesses of
BCGs

As Example 7.6 explains, to determine the distances to BCGs from their apparent bright-
nesses (how bright they appear from Earth) we must assume that they all emit the same
amount of light. (If viewed from the same distance, they would all appear equally bright.) Is
this a good assumption? Figure 7.10 shows the distribution of galaxy luminosities throughout
the sample.

1. Two-thirds of the BCGs will lie within 1σ of the mean luminosity, between

and times as bright as the Milky Way. For the remaining third, D-flux would
be more than 16% too low or more than 33% too high (see Example 7.6). (1 point)

2. ( D-size / D-flux ) is more accurate, on average. (1 point)

7.5.3 Comparing Distance Estimators

We have estimated the distance to each BCG in three ways, from their sizes, their fluxes,
and their redshifts. How do these techniques compare? To compare all three methods, we
will plot each type of distance estimate against a “gold standard” based on measurements
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Figure 7.10: This histogram shows the distribution of luminosities within our sample of 34
BCGs. A BCG with a luminosity of unity would emit as much light as the Milky Way galaxy.
The average value is 3.0 ± 1.3, relative to the Milky Way.

of the distances to each galaxy cluster. Each of these measurements are based on multiple
galaxies within each cluster, so they can leverage multiple measuring techniques and benefit
from combining data taken for all of the galaxies within each cluster.

Reload the GEAS project lab exercise web page, and click on the link for this exercise
labeled “Web application #3 (distances plotting tool).” Enter your distance measurements
for each BCG in the box labeled “Distances to plot: D-size, D-flux, and D-z,” placing three
measurements on a line for each of your ten BCGs.

Once you have done so you will create a plot comparing D-size, D-flux, and D-z in turn
against the distance to each cluster. Each plot window will contain points for 34 BCGs, the
ten that you fit and 24 more that we analyzed using the same techniques. Your data will be
shown as large magenta points, while the other 24 BCGs will appear as smaller red points.

Let’s examine these plots, and see how well our distance estimators worked.

1. Be sure to save a JPG- or PNG-format copy of the plot to your computer, to include in
your lab report. (7 points)

2. Do the ten points from your data set appear to follow the same trend as the 24 additional
points? If not, how do they differ, and why do you think this might have occurred? (1 point)
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3. If all of the distance estimators were “perfect”, what values would you expect for a slope
and a y-intercept for each window? (1 point)

4. The two distance estimators ( D-size / D-flux / D-z ) had the worst rms deviations
(highest σ values) when plotted against the cluster distances. (1 point)

5. Distance estimator ( D-size / D-flux / D-z ) had the best rms deviation when plotted
against the cluster distances. Do the points in this plot also appear to follow the best-fit line
most closely, just looking by eye? ( yes / no ) (1 point)

6. Why do you think that this technique produced the best results? (2 points)

7.5.4 The Range of BCG Properties

Figures 7.9 and 7.10 illustrate the fact the BCGs exist over a significant range of sizes and
luminosities. By assuming that they were all the same size and emitted the same amount
of light, we were able to make only rough approximations of their distances. Let’s now plot
size against luminosity in Figure 7.11, and learn a bit more about these galaxies.

1. Is the most luminous BCG also the largest one? ( yes / no ) (1 point)

2. Is the least luminous BCG also the smallest one? ( yes / no ) (1 point)

3. What percentage of the 34 galaxies are either brighter and smaller than average, or fainter
and larger than average? (2 points)

4. In general, BCGs which are intrinsically brighter than average are also ( larger / smaller )
than average, while those which are intrinsically fainter than average are also ( larger /
smaller ) than average. Explain this result, assuming that the luminosity of a galaxy is just
the total amount of light emitted by all of its stars. (2 points)
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Figure 7.11: The distribution of physical sizes and luminosities within our sample of 34
BCGs, with the same units as those used in Figures 7.9 and 7.10. The horizontal dotted
line indicates the semi-major axis of the average BCG (20 kpc), so galaxies above this line
are larger than average and galaxies below this line are smaller than average. The vertical
dotted line indicates the luminosity of the average BCG (three times that of the Milky Way),
so galaxies to the right of this line are brighter than average and galaxies to the left of this
line are fainter than average.

7.6 Telescopes Are Time Machines

We’ve been working with observational data that support one of the greatest discoveries of
all time, the fact that the Universe is expanding outward. Galaxies are moving further and
further away from us with every passing second, and also moving further and further away
from each other. Not only are most galaxies rushing away from us – as shown by all those
redshifted spectra – those farther away are moving proportionally faster.

Example 7.8

Though you may not have realized it, as you worked with images and spectra of distant
galaxies you were traveling through time. It takes light a whole second to travel just 300,000
kilometers. When we examine the light emitted by distant galaxies which lie hundreds or
thousands of megaparsecs away from us, we see them not as they are today, but as they were
billions of years in the past.

The light emitted by a galaxy with a redshift of 0.10 was emitted more than a billion years
ago (1.1 billion years), and the photons from one at a redshift of 0.30 left their home more
than three (3.3) billion years in the past. Imagine an astronomy student living in a galaxy
with a redshift of 0.40 examining images of our own Milky Way galaxy – from their point of
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view, our solar system would still be in the throes of formation, and life on Earth would be
an unknown possibility of the far-flung future!

7.7 Final (Post-Lab) Questions

1. In the 1930–1950 era the Andromeda Galaxy was thought to lie a mere 750,000 light
years away, but this distance was increased to two million light years in later years. What
happened? The Andromeda Galaxy did not leap and skip across the cosmos! The calibration
for the Cepheid period-luminosity relationship improved, however, changing all distances
which depended on it. Similar corrections occurred in the 1970–2000 era, producing large
changes in cosmologically-based distances determined from measured redshifts, as the value

of the important constant known as also became more accurate. (1 point)

2. How do the BCGs differ qualitatively and quantitatively from our Milky Way galaxy?
(Consider galaxy sizes, luminosities, colors, types, and environments.) (2 points)

3. What is the redshift of the most distant BCG that you examined? Roughly how long ago
was the light captured in the image that you analyzed emitted by the galaxy? (2 points)

4. If it takes light a full second to travel 300,000 kilometers, how long does it take to travel
one parsec, or even 400 Mpc, in units of years? (A parsec is equal to 3 × 1013 kilometers,
and there are π × 107 seconds in a year.) (3 points)
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5. We can use the Hubble constant H0 to estimate the age of the Universe. We observe that
the Universe is expanding; clusters of galaxies are all moving apart from one another. In
the past the galaxies were closer together, and if we go back far enough in time we get to a
point where this expansion started. We call that event – the start of the expansion of the
Universe – the “Big Bang.” As the Universe expands, more distant galaxies are observed to
be moving away faster since there is more expanding space between us and them. There is
thus a correlation between the distance and the time. Let’s see how that works!

If a friend says that they drove at a velocity v of 60 miles per hour and covered a distance
d of 120 miles, you instantly know their travel time t (two hours). Velocity equals distance
per unit time, so

v =
d

t
, and t =

d

v
. (7.18)

In this case,

t =
d

v
=

120miles

60miles per hour
=

120

60
hours = 2 hours. (7.19)

We can perform the exact same calculation for galaxies, using the fact that H0 = v/d.

t =
d

v
=

1

H0

. (7.20)

Until now we have expressed the units of H0 as km sec−1 per Mpc. We need to cancel the
units of length (kilometers and megaparsecs), leaving seconds (a unit of time).

t =
d

v
=

1

H0

=
1

72 km sec−1 per Mpc
=

1

72

Mpc-sec

km
. (7.21)

(a) One parsec is equal to 3 × 1013 kilometers, so how many kilometers are there in a
megaparsec (in 106 parsecs)? (1 point)

Let’s call this value L. We can now replace the Mpc in our expression for t with “L kilome-
ters”.

t =
1

72

Mpc-sec

km
=

1

72

L km-sec

km
=

L

72

km-sec

km
=

L

72
seconds. (7.22)

(b) There are π×107 seconds in a year, so what is the age of the Universe, in units of billions
of years? (3 points)

t =
L

72
seconds ×

year

π × 107 seconds
=

L

72π × 107
years. (7.23)
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(c) If the Hubble constant H0 were twice as large, the age of the Universe would be ( twice
as large / half as large / unchanged ). (1 point)

7.8 Summary

After reviewing this lab’s goals (see §7.1.1), summarize the most important concepts explored
in this lab and discuss what you have learned. (24 points)

Be sure to cover the following points.

• Describe various methods astronomers employ to obtain distances to celestial objects.

• Define “redshift”, and discuss how it is determined from a galaxy spectrum.

• Explain what Hubble diagrams, Hubble’s Law, and the Hubble constant are, how they
relate to determining distances to other galaxies, and why they are important.

• Discuss how the distance to the brightest galaxy in a cluster (BCG) can be determined
several ways (by assuming that all BCGs are the same size, or that they emit the
same amount of energy, or by measuring their redshifts), and how reliable the derived
distances are in each case.

Use complete, grammatically correct sentences, and be sure to proofread your summary. It
should be 300 to 500 words long.

7.9 Extra Credit

The Hubble constant H0 determines both the size of the Universe and its age. For example,
the extent of the observable Universe can be described in terms of the distance to the galaxy
with the greatest measured redshift. This redshift tells us how far away the galaxy lies, and
how much time has passed since the light that we see from it was emitted (the “look-back”
time). Both values depend on H0.

Research this topic briefly, and provide the latest numbers associated with the most distant
galaxy ever observed and the age of our Universe. Describe how these values would change
if the value of H0 was revised to be greater or smaller. (5 points)
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