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Abstract

Statistical approaches are used to assess the demography of supermassive black
holes (SMBHs) in terms of their mass. A statistically complete sample of galaxies
from the Sloan Digital Sky Survey (SDSS) with redshifts 0.03 6 z 6 0.1 is used in
the formulation of the Black Hole Mass Function (BHMF). The strong correlation
between black hole mass, MBH , and galaxy velocity dispersions, σ, in the nearby
universe, as well as the existence of a fundamental plane, suggests some mechanism
regulating the coevolution of SMBHs and their host galaxies. The distributions in
both σ and MBH can be approximated by a 4-parameter Schechter-like function,
with a power law and an exponential fall-off. The derived BHMF indicates there
are far more SMBHs with masses between 106 M� and 108 M� than there are larger
ones. Assuming an average radiative efficiency, the mass density accreted by local
SMBHs matches that observed from high-redshift Active Galactic Nuclei (AGN),
implying that the same phenomenon powers both types of objects and that mass
accretion is the primary mode of growing SMBHs. Uncertainties in the methodology
and limitations to observational data are discussed.





Introduction

The evolution of the universe can be likened to a display of fireworks that
has just ended: some few red wisps, ashes, and smoke. Standing on a well-
chilled cinder, we see the fading of the suns and try to recall the vanished
brilliance of the origin of the worlds.

- George Lemaitre

Research is to see what everybody else has seen and to think what nobody
else has done.

- Albert Szent-Gyorgyi

Science often has a way of appearing mere steps removed from fantasy. Often
the deepest questions we ponder about the world which we inhabit lead us to the
strangest and wildest answers. Black holes were once a mathematical curiosity, an
abstract fascination of theoretical physicists reveling in the possibilities of the modern
era of atoms, photons and a curious idea called general relativity. A century later,
the study of these objects inside of which supposedly all laws of Physics break down,
is of paramount importance to astronomy. A slew of breakthroughs in recent years
have enabled us to observe two stellar-mass black holes1 merging to form bigger ones
many, many years ago, in the farther reaches of the observable universe (Fig. 1).

But presently we have enough evidence to comfortably believe that black holes
exist in extreme proportions too: SuperMassive Black Holes (SMBH) as massive
as millions to billions of suns, lie at the hearts of galaxies that populate our universe.
While two decades ago we were trying to prove SMBHs exist, today we’ve moved past
this ‘proof-of-concept’ phase to study their demographics, how they form, and even
how influential they are to the origin tales and evolution of galaxies in which they
rest. Most astronomers now believe the seemingly incredible hypothesis that SMBHs
reside at the centers of most, if not all, galaxies in the universe (including our own –
more of that later in this chapter).

Despite our misfortune of not being able to see black holes, there is one very
important characteristic of theirs that we can measure – mass. In this thesis, I will
construct a complete census of the mass of SMBHs, MBH , in our nearby (local) uni-
verse and their evolution by means of a SMBH mass function. I will use observations
which produced reliable estimates of MBH in galaxies nearby. These, I will couple

1A black hole that is about 5 to a few tens of times as massive as the sun
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to empirical relationships observed between MBH and properties of the host galaxies
to estimate MBH of galaxies that are simply too far away to measure the mass of
their central black holes. This information will be exploited to create a SMBH Mass
Function, or the Black Hole Mass Function (BHMF). The mass function allows
us to determine how densely packed our present-day (local) universe is with SMBHs
of a given mass and is one of the key empirical tools in our arsenal for investigat-
ing SMBHs, and for constraining theoretical models for how the SMBH population
grows. It’s important to note that Intermediate Mass Black Holes (IMBHs) as light
as a few tens of solar masses to just less than a million, are also believed to exist, but
their existence is still a matter of debate and are not considered in this thesis. In the
rest of this introduction, I will provide a brief historical overview of the fascinating
developments arising from SMBH research and motivate the reasons for my study.

Figure 1: A simulated image of two black holes merging into one. Image Credit: SXS,
the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org).

The greatest ideas in astronomy have always faced the mightiest of skeptics. One
need merely look at the nearest reference point civilization in the Western canon –
ancient Greece. Despite spectacular advances like using Babylonian records of the
heavens to predict solar eclipses (Thales of Miletus), figuring out that the Earth was
orange-shaped instead of a plane, and even postulating the Earth wasn’t at the heart
of the solar system (Aristarchus of Samos), Aristotle’s fantastic and unfortunately
inaccurate model of the Earth being centered around many (55, in fact) concentric
spheres endured for thousands of years. Aristotelean Cosmology gave birth to the
notion of objects naturally moving in circles, and also the idea that our humble blue
planet is the unequivocal focus of the universe. The Catholic Church endorsed this
zealously and most people until medieval times didn’t bother questioning it. Why
would you risk contradicting the most important natural philosopher west of the
Himalayas?

http://www.black-holes.org
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For all of Aristotle’s faults, I will concede that the science of cosmology began
with the model he presented in On the heavens and Meteorologica – arguably the first
known scientific theory in cosmology. He observed the positions of objects in the
sky change and formulated the hypothesis that heavenly bodies all move in circles
around the Earth. He used this hypothesis to make predictions, such as where these
bodies might be seen a year from now, which were verified by recorded observations.
With the backing of the church, four hundred years after Aristotle’s model, Ptolemy
proposed an updated version, with 8 spheres culminating in heaven (Fig. 2). Despite
opposition by many, including medieval Islamic scholars who rejected some of the
basic Ptolemaic postulates such as an infinite universe, a stationary Earth and so
on, a geocentric universe remained accepted knowledge until the Renaissance. [For
a modern history of cosmology traced from antiquity to the present day and across
different cultures, see Refs.[1] and [2]]

Figure 2: Ptolemy’s geocentric model of the universe. Figure from Steven Hawking’s
A brief history of time [3].

It can be argued that the first truly satisfying breakthrough in western science
came from a Polish astronomer and polymath in 1543, some 1800 years after Aris-
totle. The publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium
(On the Revolutions of the Heavenly Spheres) kickstarted the scientific revolution.
In it, Copernicus de-seats Earth from its “rightful” place at the center of the universe
and instead proposes that it goes around the sun, along with the other known planets.
Johannes Kepler, a German astronomer, modified Copernicus’s theory by suggesting
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planets move in ellipses, birthing the heliocentric model of the universe we still use
today. The discovery of the four largest moons of Jupiter orbiting the gas giant, of
Italian astronomer and scourge of the Catholic church, Galileo Galilei, lent incontro-
vertible evidence to this model. Humanity was progressing from natural philosophy
to the modern scientific method.

As our technology improved and our available resources maximized, we’ve been
able to peer deeper and probe farther into the darkness of space than our ancestors
might have imagined. With the advent and expansion of modern astronomy, we’ve
travelled past moons of Jupiter and Saturn, past comets and asteroids, and outside
the edge of our own galaxy – the Milky Way. Going back to the Greeks, Democritus
in the fifth century B.C.E. believed that the patchy bright band in the night sky was
actually made up of light from distant stars. Two millennia later, Galileo verified
just this by peering through his telescopes2. For decades, the foremost intellectual
debates in astronomy centered around what we now accept as fact – that there are
more galaxies like our own, composed of billions of stars like our sun (and many unlike
our sun). The belief that distant nebulae were actually galaxies very far away was
countered by the discomfort of leaving a finite, single-galaxy universe to a seemingly
infinite ocean of these “island universes3.”

This went so far that written in the annals of modern astronomy is the story of “the
Great Debate” of 1920 – a public debate about the scale of the observable universe
between two of the foremost astronomers of the day. Harlow Shapley of the Harvard
College Observatory passionately advocated for spiral nebulae such as Andromeda
(M31) being inhabitants of the Milky Way, while Heber Curtis of the UCO Lick
Observatory steadfastly contended that these nebulae were galaxies of their own (the
published version of the debates can be found in Refs. [5, 6]).

Edwin Hubble settled the debate four years later, and proved Curtis right. Hubble
published an article in the New York Times in November 1924, and a couple months
later, in the 1925 meeting of the American Astronomical Society (AAS), presented a
paper unassumingly titled, “Cepheids in Spiral Nebulae” that proved the Andromeda
nebula must be a galaxy of its own. He used the 2.5 meter Hooker Telescope at Mount
Wilson Observatory (largest in the world at the time) to resolve stars in Andromeda.
The telescope allowed him to resolve individual stars and by one of the happiest
accidents in 20th century physics, locate a class of stars called Cepheid Variables in
the nebula. Cepheid variables are radially pulsating stars whose existence had been
known to us for centuries.

Earlier in the twentieth century, one of the many criminally under-appreciated
women in modern astronomy (more of whom are to appear in this chapter), Henri-
etta Swan Leavitt, established a relationship between the apparent brightness and
pulsation period of classical Cepheid stars. Leavitt made use of the fact that by
measuring apparent brightness of a star (incoming flux), we can deduce how far it
is, given we know its intrinsic brightness (luminosity). The brighter a Cepheid ap-

2Scottish poet Thomas Seget once said, “Columbus gave man lands to conquer by bloodshed,
Galileo new worlds harmful to none. Which is better?”

3The term was first coined in the 18th century by German philosopher Immanuel Kant, who was
one of the first proponents of an extragalactic cosmos [4].
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peared, the higher was its pulsation period, Leavitt found, and consistency of this
period-luminosity relation could be harnessed in using Cepheids as benchmarks, or
“standard candles” with well-defined intrinsic luminosities; all we have to do is mea-
sure their period of pulsation and we end up with a very reliable estimate of how far
they are from us. This is precisely what Hubble did in 1924, and by measuring the
period of Cepheids in the Andromeda nebula, he found that it was 900,000 light years
away from us. In an ironic twist of fate, a couple years prior to this, Harlow Shapley
himself found globular clusters – dense collections of stars signifying the edge of the
Milky Way – to be at most 100,000 light years away. Andromeda was thus about 9
times as far as from where we thought the observable universe ended. The field of
extragalactic astronomy was born.

We now find ourselves a lonely island universe among two trillion (2 ×1012) oth-
ers [7], and we’re actually all moving away from each other. In our current model
of the expanding, accelerating universe, galaxies are the basic building blocks on a
cosmological scale, yet we’ve had tough luck cracking the mystery of their origins.
About 17 years ago, astrophysicists started entertaining an extraordinary possibility:
black holes – very big ones – might have evolved alongside galaxies and could hold
the key to understanding how they grew to be where they are today. One of the
most extreme objects in our observable universe could help explain the evolution of
its most ubiquitous residents, and in turn, tell us where we came from.

The story of supermassive black holes begins with an apple falling (or not) and a
very powerful idea emerging from that (possibly fictitious) encounter. Isaac Newton
developed the methods of calculus and proposed a mysterious force that accounts for
the motion of heavenly bodies around the sun as well as things like why we fall back
to the Earth after we jump. In 1687, upon the publication of Philosophiæ Naturalis
Principia Mathematica (Mathematical Principles of Natural Philosophy), we were
awakened to the three basic laws of motion (of everything, it was thought at the
time), and the attractive force that each body with mass exerts on other bodies with
mass – gravity. With this force, Newton derived Kepler’s laws of planetary motion
and explained Galileo’s discovery of Jupiter’s moons revolving around it.

Newton’s law of universal gravitation states that an object with mass m1 should
attract another object with mass m2 with a force, F , that varies inversely with the
distance, d, between them given by:

F = −Gm1m2

d2
, (1)

where G is the universal gravitational constant. So if you replace the sun with a
star twice as heavy, it would exert twice as big a gravitational force on us. Or if you
moved the earth twice as far from the sun, we would feel a quarter of the gravitational
force we feel now.

Principia might have set the world of physics in motion (no pun intended), but it
didn’t shake the entire world immediately. Intellectual leaders of the enlightenment,
the likes of Gottfried Wilhelm Leibniz (whose feud with Newton over the invention of
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calculus is among the storied lores of science and mathematics – boy, physicists love to
argue), Réne Descartés, and Christiaan Huygens, had their own formulations of what
causes motion and only partially accepted Newton’s model, if at all. Walter Bryant
believed that it wasn’t until 1738, when French philosopher Voltaire published a
popular treatise in support of Newton’s laws, that they were beginning to accumulate
universal acceptance [8]. Ten years after that, the French Academy of Sciences offered
an award to anyone who could solve the perturbations in the orbits of Jupiter and
Saturn around the sun predicted by Newtonian gravity. These were solved by two of
the giants of 18th century mathematics – Leonhard Euler and Joseph-Louis Lagrange.

The other major player in this story is another of nature’s mystical phenomena
– light. Newton believed that light was made up of particles, while others such as
Dutch physicist Christian Huygens believed light was a wave. We now know they’re
both correct – the wave-particle duality of light implies it can behave as both particle
and wave (as a matter of fact, so can all matter). Until much of the 17th century,
there was not much reason to doubt that light traveled infinitely fast. In 1676, Danish
astronomer Ole Christensen Rømer, observed that the moons of Jupiter appeared to
orbit it faster when the earth was approaching Jupiter than when it was moving away
from it. This, he reasoned was due to light from the moons taking different times
to reach us depending on our velocity relative to them. So if light travels a finite
distance in a finite amount of time, it must be a finite quantity. He calculated that
light traveled a staggering 220,000 kilometers a second in vacuum, which is about
26% lower than the currently accepted value of ∼299,800 kms−1. The decade prior
to Principia, Newton defined his corpuscular theory of light, which basically treats
light as many tiny particles. He was sure that not even these corpuscles of light could
escape the pull of gravity.

As early as the 18th century, scientists began speculating about the extremes of
the interaction of light with gravity. In 1783, the English reverend and polymath
John Michell sent a paper to Lord Henry Cavendish of the Royal Society, predicting
the existence of “dark stars.” Michell predicted that a star about as dense as the
sun but about 500 times as wide in diameter would have an escape velocity – the
minimum speed needed to overcome the gravitational pull of the star – bigger than
the speed of light. In other words, he believed that not even light can escape the
gravitational attraction of a star that is sufficiently large and dense. The problem
with these stars, of course, is that we wouldn’t be able to see them. However, Michell
offered a brilliant solution for that too [9]:

“...yet, if any other luminous bodies should happen to revolve about them
we might still perhaps from the motions of these revolving bodies infer
the existence of the central ones with some degree of probability, as this
might afford a clue to some of the apparent irregularities of the revolving
bodies, which would not be easily explicable on any other hypothesis.”

Aha, use of the law of gravity in action! It’s quite remarkable that in 1783, we’d
already predicted that we were going use the super-sped up motion of stars around a
central body to infer the existence of supermassive black holes! But more on that in a



Introduction 7

bit. In the meantime, the president of the Institute de France, Pierre-Simon Laplace4

developed this idea of dark stars independently and prophesied what astronomers
now know to be true:

“The largest luminous bodies in the universe may thus be invisible by
reason of their magnitude”

This he included in his famous treatise on the solar system Exposition du systéme
du monde in 1796 [10]. He even followed it up with a mathematical proof three years
later, where he demonstrated that a body as dense as the earth wouldn’t let any light
escape it if its diameter was 250 times as much. It is interesting that even though both
of these scientists were spot on about the existence of the object in question, they were
pretty far off (in fact, barking up the wrong tree) in predicting its form. In any case,
Huygens’ wave theory of light was gaining rapid popularity around the beginning of
the 19th century, especially after the success of Young’s double slit experiment (1803)
and Fresnel’s work on the diffraction of light (1818). It wasn’t clear how this wave
description of light would interact with Newtonian gravity, so the effect of a star’s
gravity on the light it emits became a much more difficult problem to solve. And
probably accordingly, Laplace omitted the idea of dark stars from the 3rd edition of
Exposition [11].

The 18th and 19th centuries saw the development of various subfields of physics,
from classical mechanics to thermodynamics to optics to electrodynamics. By the
early 19th century, we were beginning to understand the electricity that lightning
carries. Ørsted’s (1819) and Ampéré’s (1820) curious discoveries of compass needles
and other magnets being affected by wires carrying electrical current culminated in
Michael Faraday (1831) showing how a changing magnetic field sets up an electric
field. Electrical generators and motors were invented, heralding the electrical revo-
lution. In 1865, Scottish mathematical physicist James Clerk-Maxwell showed that
electromagnetic fields travel through space as waves with the same speed...the speed
of light! More impressive still, he developed the earliest forms of the four equations
that govern all electromagnetic phenomena in classical physics, allowing us to describe
light precisely in mathematical form for the first time. As the century was wrapping
up, Serbian engineer Nikola Tesla founded the principles upon which we built the
alternating current (AC) supply system we use today.

But as Tesla was making wondrous generators that flashed lightning, we had not
progressed much further on the first fundamental force, the one that started it all.
Newtonian gravity was useful for predicting most terrestrial motion, but physicists
had realized that perturbations in Mercury’s orbit could not be explained by it. An
even bigger issue was with the fundamental nature of gravity. According to Newton,
it was an instantaneous force that acts at a distance and it relied on the notion that
time is absolute. A more satisfactory answer to the nature of reality was finally
provided in the early years of the last century.

In 1905, a 26 year old German patent clerk found a new way of looking at the
physical world. Albert Einstein presented his theory of special relativity, which in a

4Also father of Bayesian probability and general math wiz.
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dramatic sweep of events de-seated Newton’s classical mechanics. Einstein suggested
that there was no such thing as absolute time, and as a matter of fact, no privileged
reference frames with which to view the world. Einstein’s two major ideas were that
the laws of physics will appear the same to any observer who is at rest or at least
not accelerating, and that all observers measure the same value for speed of light in
vacuum (giving us a constant we delight in calling c), which is the maximum speed
anything can be achieve in our physical world. In 1916, Einstein completed his radical
idea to unveil the nature of gravity. In the theory of general relativity, the triumphant
breakthrough was to look at space and time geometrically; if you imagine space-time
as a sort of fabric, then gravity is simply the result of smaller bodies being pulled
by the dent in the fabric caused by massive bodies (Fig. 3a). With his famous field
equations, he described the geometry of space-time via their interaction with matter
and radiation.

The story goes that Einstein became famous overnight after the total solar eclipse
of May 1919 proved him right. A team led by Sir Arthur Eddington confirmed
that light from stars passing close to the sun was deflected as predicted by general
relativity (Fig. 3b), granting global superstardom to Einstein. Gravity does influence
light under this strange new theory, but its strangest result would take us back, as
luck would have it, to John Michell and Pierre Laplace in the late 18th century...

In 1916, a few months after publication of Einstein’s field equations, Karl
Schwarzschild worked out their first exact solutions in the World War I battlefield.
The Schwarzschild metric, as it’s now called, offered a remarkable finding of general
relativity: for a star of a given mass, there exists a critical radius of the star at
which we get a singularity. Mathematically, this meant that some of the terms of
the equation become infinite or undefined: physically speaking, the laws of physics
break down! This implied that time would be infinitely dilated if the star in question
reached that critical radius, termed the Schwarzschild radius, rs, i.e. if:

rs 6
2GM

c2
, (2)

where G is the same constant from (1), M is the mass of the star, and c the
speed of light. Light simply cannot escape from the surface of such a star. In other
words, our new model of the universe incorporates the idea of an object so dark that
it cannot be seen any distance from it. Dark stars can exist.

Of course, this idea was received with much skepticism and at best, as an inter-
esting theoretical conjecture to be contemplated upon. Einstein himself didn’t think
such light-sucking monsters could exist out in space and Eddington mathematically
disproved the existence of such a singularity by making a change of coordinates in
the Einstein field equations.

But what about real stars? You know, things we can actually observe? In 1930,
a 20 year-old graduate of the Presidency College in Madras, India, named Subrah-
manyan Chandrasekhar, began his journey to Cambridge University for his doctoral
degree. On his voyage, he worked out a correction to the work of his soon-to-be-
adviser and collaborator, Ralph Fowler, on the statistical mechanics of white dwarf
stars. White dwarfs were believed to be the final stage of a low-mass (mass 8 times
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(a) The curvature of space-time, predicted by general relativity. More massive objects create
a larger dent in the fabric of space-time than less massive ones. Image credits: ESA.

(b) Newspaper reports of the solar eclipse of May 1919 verifying Einstein’s theory of general relativity
from The New York Times (L) and The Illustrated London News (R). Image credits: Forbes.

Figure 3: Model of (a) general relativity and (b) verification in 1919.
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or less than the Sun’s) star’s lifespan, formed when stars burn through most of their
fuel and shed off their outer layers to leave behind a very hot, dense core. A cubic
centimeter of a white dwarf would weigh about a ton [12]! What Chandrasekhar
found was that there was limit to how heavy these objects can get.

The truth about stars is that they need something to fight the ever-present attrac-
tion of gravity, which in their normal lifetimes is the heat generated by their nuclear
fuel. When a star burns out of its nuclear fuel and shrinks to a white dwarf, the
particles it is composed of, including electrons, get much closer to each other, reduc-
ing it to a bunch of positively-charged ions surrounded by a sea of electrons (instead
of a collection of individual atoms). By virtue of what is called the “Pauli exclusion
principle” (named after Austrian physicist Wolfgang Pauli), no two electrons can oc-
cupy the same quantum state. What this means is that the electrons in a gas must be
in different discrete energy levels and so must have different speeds with which they
travel. Consequently, the electrons in a white dwarf must move away from each other
and prevent the star from compressing further, allowing the white dwarf to live out
the rest of its days in peace.

But recall that nothing moves faster than light in vacuum. Accounting for this
maximum limit, Chandrasekhar reasoned that when a white dwarf’s mass gets close
enough to the Sun’s, even the repulsion guaranteed by the exclusion principle could no
longer defeat gravity’s pull in this stellar tug-of-war. The white dwarf can no longer
support itself against its own gravity and simply...collapse [13]! Later, the value of 1.4
M� (1.4× the mass of the Sun) was adopted as this maximum mass, which is famously
known as the “Chandrasekhar limit.” Chandrasekhar’s work pioneered the physics of
degenerate matter, and in 1983, he and Fowler became the first astrophysicists to win
the Nobel Prize in Physics.

Chandrasekhar’s theory accounts for about 97% of the stars in the Milky Way,
but what happens when a white dwarf’s mass exceeds 1.4 M�? Russian physicist
Lev Landau found another possible final state of stellar evolution – the ultra-dense
neutron star. When you have a star that starts with at least 8 M�, it can collapse
into a state where the attraction of gravity may be balanced with the repulsion
between neutrons and protons, instead of electrons, and where the star is composed
primarily of neutrons (hence the name neutron star). These aged relics of once shining
spectacles in the emptiness of space are much, much denser than white dwarves – in
fact, a Rubik’s cube’s worth of neutron star material would weigh several billion tons
[14]! It would appear at this point that stars simply got denser as you put more mass
into them in these final stages. This begs the obvious question: do they eventually
collapse to infinite density?

In 1935, to a doubtful audience at the Royal Astronomical Society, Chandrasekhar
posited that nothing could stop the collapse of a white dwarf past the Chandrasekhar
limit. Eddington, with whom Chandrasekhar actually voyaged to England for the
first time, vigorously opposed this. Robert Oppenheimer, father of the Manhattan
projects, presented a similar argument for neutron stars (1938). The physics com-
munity was once again divided by another major controversy, over the existence of
gravitational singularities. The debates, at least from a theoretical standpoint, ended
when Oppenheimer and one of his students, Hartland Snyder, published a paper in
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1939 titled, “On continued gravitational contraction” [15].
In their pioneering work, Oppenheimer and Snyder asserted two fundamental

tenets of gravitational singularities: i) Through our old friend the Einstein field equa-
tions, we find that unless a dying star shrinks to below the Chandrasekhar mass, it
will continue to collapse indefinitely under the force of gravity and ii) Though an
observer from the outside would see this collapse play out over a finite period of time
(in the order of a day), after the star has collapsed to a certain radius (remember
equation (2)?), light would take an infinite amount of time to escape it – rendering
the star invisible to anyone who wishes to observe it. Neutron stars, as it turns out,
also have a maximum mass – of about 3 M�.

But enough about the theory of gravitational singularities, what observations
could back up such extreme conjectures? It took until 1943, when an American
astronomer at Mt. Wilson, Carl Seyfert, published his discovery of galaxies so bright
at their centers that the core brightness matches the brightness of all the stars in the
entire galaxy combined (Fig. 4) [16]. Seyfert also noted that these twelve galaxies
had unusually broad lines in their emission line spectra; this had the remarkable
implication that the gas and other matter surrounding the center was moving at
several thousands of kilometers a second. This beats even the speed of matter expelled
when stars explode in supernovae in our galaxy!

Light ranges over the electromagnetic spectrum: our eyes can only see a tiny sliver
of it (400-700 nanometers in wavelength). Waves from the radio part of the spectrum
are about a million times as large as those we can see. Radio waves were first detected
in outer space in 1932 at the center of our galaxy by Bell Labs’ Karl Jansky. In the
1950s though, as the search for radio sources gained traction, we discovered them
outside of our galaxy: Baade & Minkowski (1954) realized the radio source Cygnus
A was actually born out of plasma in the center of the galaxy M87. More spectacular
still, the radio waves shot out of the galaxy’s nucleus in jets traveling in opposite
directions. And like Seyfert, they found ionized gas with unusually broad emission
lines in their emission spectra, implying the matter from the radio-bright center was
moving very fast. Something weird was happening in the center of M87 that no
one could explain. Then, we saw stranger radio sources much further away in the
observable universe.

Much like the political, social and cultural arenas, the ‘60s were an eventful decade
for extragalactic astronomy. While the Beatles were taking Earth by storm, as-
tronomers started finding the brightest bodies in the heavens. Caltech astronomer
Maarten Schmidt found optical emission lines of radio source 3C-273 at unexpected
wavelengths and suggested these were the same lines as Hydrogen’s5, simply shifted
by 16% to the higher frequency, or red end of the spectrum. He realized this object
was at a considerable redshift. Since the universe is expanding, the further a galaxy is
from us, the faster it is moving away from us: this corresponds to a shift in wavelength
and frequency of light from the galaxy, which makes us see the light as redder than
it actually is. We observe this on a pedestrian scale when we hear the siren from an
ambulance whizzing past us – as it’s moving toward us, the siren seems to increase

5Hα, Hβ, Hγ, Hδ, Hε
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(a) NGC 7742. Credits: Hubblesite. (b) NGC 4258 (M106). Credits: Hubblesite.

(c) NGC 1642. Credits: Hubblesite. (d) NGC1542. Credits: High Energy Astrophysics
group, Max Planck Institute of Extraterrestrial
Physics.

Figure 4: Some examples of Seyfert galaxies, whose centers are as bright as the rest
of the galaxy combined.

in pitch; as it moves away from us, the siren becomes less shrill. By measuring this
observed frequency shift, we get redshift – this tells us how far the light source is from
us. In fact Schmidt shocked the world of astronomy (and appeared on the March 1966
cover of Time magazine), when he found that despite appearing a 100 times brighter
than the Milky Way, 3C-273 was over 2 billion light years away from us! It was the
first ever quasar, or quasi-stellar object (QSO), we detected.

The biggest shock these quasars would provide is that their light originates from
regions mere light hours and light weeks to at most a few light years across – smaller
than the size of a solar system! 3C-273 was far from being an entire galaxy; it’s sim-
ply a small region at the center, much like the strong nuclear emission from Seyfert’s
galaxies. The key to realizing this fact was to look at the variability of quasar lumi-
nosities. It was found that quasars vary in brightness by significant amounts in the
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span of months, weeks, days, and even hours. A rise and fall in brightness of a quasar
over a period of a week means that light would take a week to travel the length of
the quasar. And on account of nothing traveling faster than light in free space, the
size of the quasar can not exceed a light week. Most of the distant quasars we see
emit radiation in the order of trillions (×1012) or more times that of the sun.

This created an absolutely unavoidable energy crisis. How could so much energy
be produced in a tiny region smaller than a solar system of a single sun? How could
you possibly pack the weight of billions of suns into this space (which is less than
a millionth the size of a galaxy)? Astrophysicists were stumped as to what process
could generate energy so incredibly efficiently. The usual suspect in astrophysical
energy conversion processes is thermonuclear reactions such as nuclear fusion in the
core of the sun. These are at most 0.7% efficient, failing miserably to explain what
powered quasar engines. Some considered high energy gamma rays and supernovae
explosions, but these are very transient phenomena, lasting at most a few weeks.
The answer, as you may have anticipated by now, came from the oldest trick in the
physicist’s playbook – gravity.

In the early ‘60s, Einstein’s theory of general relativity once again crossed paths
with astrophysics. In an attempt to explain radio sources in the sky, William Fowler
and Fred Hoyle proposed a very massive (millions to hundreds of millions of times
the sun’s mass; 106 − 108 M�) star-like object collapsing under its own gravity to
form a disc of matter around the central collapse [17]. In 1963, the Texas Symposium
on Relativistic Astrophysics was founded, and some of the world’s most illustrious
astronomers argued the case for a gravitational energy source at the heart of quasars.
Authors such as Hong-Yee Chiu (who coined the term “quasar” in 1964), Ivor Robin-
son, Alfred Schild and Lloyd Berkner believed that the principles of relativity lead to
the unavoidable conclusion that very dense objects at the centers of quasars convert
matter falling into them, releasing the intense radiation we observe from them [18].

In 1964, both British astronomer Edwin Salpeter, and Soviet physicist Yakov
Zel’dovich, suggested that objects heavier than a million (106) M� could passionately
consume matter onto themselves by force of their deep gravitational potential well.
The matter, they suggested, would be converted to radiation by virtue of the most
famous equation in all of physics:

E = mc2. (3)

The stunning implication was that these very dense, massive objects at the cen-
ters of galaxies grow by feeding on matter around them and releasing energy through
this accretion process. John Wheeler, in the same year, suggested that the source
of this energy was a gravitational singularity, bringing back echoes of the ideas of
Schwarzschild, Chandrasekhar, Oppenheimer, Snyder, and others. He also proposed
we call such singularities black holes. By the end of the decade, English astrophysi-
cist Donald Lynden-Bell had suggested that the engines powering quasars were large
collapsed masses in galactic nuclei. He went one step further to claim that quasars
exist not only in distant galaxies as we observe them, but also in the nearby ones, as
“dead” quasars in their centers (How do quasars die? More on that in a bit).
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Of course, theory can only provide so much satisfaction in explaining the nature
of reality. It was an observational triumph in 1967 that propelled the idea of black
holes from an intellectual quest to a matter of meticulous experimental investigation.
Jocelyn Bell Burnell was a graduate student at Cambridge University in 1967 when
she noticed extremely fast and consistent radio signals coming from a source in the
sky. Having observed a signal every 4/3 of a second, she realized no known object in
the sky ticked so consistently like a clock. The source was initially dubbed “LGM-1”
(LGM = Little Green Men) because the possibility of an alien civilization emitting
these signals wasn’t entirely off the table! By the next year, Bell Burnell’s findings
had been published [19] and other radio telescopes around the world confirmed the
frequency and consistency of the signals. LGM-1 was understood to be a rapidly
rotating neutron star (rotating due to interaction between its magnetic field and
matter surrounding it) and these objects were dubbed “pulsars” (short for pulsating
star). Unfortunately, the 1974 Nobel Prize in Physics for the first ever discovery of a
neutron star didn’t go to Bell Burnell – instead it went to her Ph.D advisor Anthony
Hewish and collaborator Martin Ryle. So much for progress in the astronomical
sciences...

This exciting discovery of the ultra-dense state of degenerate matter left astro-
physicists with the million dollar question: if neutron stars can exist, why can’t black
holes? In 1971, the newly launched Uhuru X-ray satellite picked up strong X-ray
signals from a source called Cygnus X-1 and found that its magnitude varied on mere
milliseconds (indicating, of course, that this radiation was produced in a very small
region – about a 100 miles) [20]. What baffled astronomers was that the X-rays were
emanating from a blue supergiant star, which is most certainly not capable of produc-
ing such high energy radiation by itself. The only way to account for these X-rays was
that another star in close orbit was pulling in gas from this one and rotating the gas
in high speed, thereby heating it up to billions of degrees at which point it can emit
X-rays (Fig. 5). The blue supergiant is part of what we call a binary star system; the
star sucking its gas to produce variable X-rays is at least 10 times as heavy as the sun.
This is well beyond 3 M�, so it couldn’t be a neutron star [21]. After 200 years of
mathematical conjectures, theoretical predictions, and observational breakthroughs,
we finally found in Cygnus X-1 a black hole in real life.

The secure detection of a black hole candidate set the stage for finding something
even more fantastic. We now had confidence that the existence of massive dark objects
in the sky could be inferred from high quality observations. By the ‘80s, the consensus
in the astrophysics community was that the power source of distant quasars were
gravitational in nature, and the search for such powerhouses were being conducted
in nearby galaxies. Thankfully for us, matter on galactic scales moves around large
masses by the same laws of orbital motion discovered by Johannes Kepler in the
1600s that explained the motion of planets in the solar system, enabling us to greatly
simplify our calculations of the motion of matter in our galaxy and others.

In 1978, Sargent et. al. found that the velocity dispersion and rotational velocity
of the galaxy M87 keeps increasing toward its center – something was causing stars to
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Figure 5: Illustration of Binary star system containing Cygnus X-1(left) and blue
supergiant companion HDE 226868 (right). Mass from the supergiant is pulled in by
gravitational attraction of the black hole and heated up in an accretion disk around
it. Image credits: Brian Ventrudo, The One Minute Astronomer.

orbit extremely fast near the very center.6 Their calculations revealed that the only
explanation for such motions was the gravitational pull of a central mass of 5 ×109

(5 billion) M� lurking in M87’s nucleus [23]. Similarly, galaxy dynamics were used to
argue for the existence of central mass concentrations of 3 ×107 M� in Andromeda
(M31) [24] and 2 ×106 M� in M32 [25] a few years later. There was now a growing
body of evidence for very, very large black holes at the centers of galaxies.

Quasars are only one of the members of a class of interstellar objects we call
Active galactic nuclei (AGN). Another example is the aforementioned Seyfert
galaxies. A critical shortcoming of AGN research as we moved into the ‘80s was the
relative lack of such powerful objects seen in the nearby universe. Why do we see so
many more AGNs in galaxies many billions of years in the past (at redshifts of 2 and
above) and only one AGN in 500 in nearby galaxies? If SMBHs exist in M31, M32,
and M87, why don’t their cores shine as brightly as those of high redshift galaxies?
The answer to this paradigm was already alluded to by Donald Lynden-Bell in 1969,
which Polish astronomer Andrzej Soltan used as the building block to a compelling
theory he proposed in 1982, famously dubbed “Soltan’s Argument.”

Building on the assumption that quasars are powered by mass accretion on to
SMBHs, Soltan used available observational data on quasars to estimate the energy
density, and subsequently, the mass density of matter accumulated by SMBHs in
quasars. He found that it is statistically likely that a SMBH would be found a
few megaparsecs7 from us. In other words, the engines powering AGNs didn’t just

6The key ingredient was the rotation curve of the galaxy – essentially a plot of the orbital speeds
of visible matter versus their radial distance from that galaxy’s centre. Rotation curves were also
the key to figuring out the existence of dark matter. See Ref. [22].

71 Megaparsec (Mpc) ≈ 326 million light years. For context, the nearest massive galaxy, An-
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disappear (try explaining your way out of that one!), but rather they became dormant,
like volcanoes do. Soltan, and many others after him, hypothesized that SMBHs
which were actively feeding on matter around them and expelling ungodly amounts
of energy in the distant universe, were simply not feeding as voraciously in more
recent times. This explained why we only see a handful of active nuclei in nearby
galaxies, but perhaps even more excitingly, it agreed with the notion that SMBHs
could exist in galaxies as close as M31, M32, and M87.

In 1990, the Hubble Space Telescope (HST) was launched into orbit, ushering in a
new era of astronomical discoveries. This was the big break the field of massive black
hole research needed – HST’s expansive, extended vision from outer space allowed
us to peer deep into the hearts of galaxies nearby. What followed was the study of
gas dynamics in galactic centers: spectrographs on board the HST showed us disks of
ionized gas rapidly orbiting about the centers of galaxies. Gas on either side of these
disks appeared to move very fast in opposite directions, indicating rapid rotation
about the center. Gas in a disk about 5 parsecs to the center of M87 was found to
rotate at a whopping 550 kilometers per second on either side of the disk, confirming
that over 3 billion suns’ worth of mass was somehow packed in its central 11 pc [26].
The rapid motion of ionized gas was used to infer that M87’s neighbor, M84, must
also be harboring a SMBH of over 109 M� at its center. With the advancements in
telescope technology in the ‘90s, we were beginning to find strong dynamical evidence
that SMBHs exist outside our tiny Local group.

The most powerful evidence to date however, lies in our own backyard, so to speak.
In 1974, four decades after Jansky’s discovery of radio waves from the center of the
Milky Way, the baseline interferometer at the National Radio Astronomy Observatory
(NRAO) detected synchrotron radiation from a very small region (less than 3 light
years across) at the center. Synchrotron emission is what you get when electrons
moving near the speed of light accelerate – as a matter of fact, spiral – through
magnetic fields. Moreover, there were no counterparts to this source in the optical,
infrared or X-ray. The mythos of this source, named Sagittarius A* (or Sgr A*),
and the galactic center, began intensifying as we observed rapid motion of gas clouds
near the center in infrared. Pretty soon, spectroscopy of ionized gas disks led to the
conclusion that Sgr A* is the location of a SMBH weighing about 2.5 ×106 M� [27].

However, we did one better. A great advantage of studying the center of the Milky
way is that because of its proximity to us, we can observe, with exceedingly great
detail, the motion of individual stars near the center and not just that of accumulated
gas (which can be easily knocked around, being light). For years, astronomers focused
on a cluster of about 20 bright stars located within 0.05 pc of Sgr A*, mapping out
their elliptical orbits about the center (Fig. 6). Monitoring of these stars began
at the European Space Observatory (ESO) in 1992, and in 2003, the orbit of the
brightest star in this cluster, S0-28, was published as the star was already about 2/3
into a complete orbit [28]. Such staggeringly fine detail presented us the most reliable

dromeda, is about 2.5 Mpc from Earth
8At least that’s what UCLA’s Galactic Center group named it. Germany’s Max Planck Institute

for Extraterrestrial Physics (MPE) calls it S2.
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evidence ever of a SMBH: it is now widely accepted that Sgr A* harbors a black hole
the mass of ≈ 4× 106 M� at the very center of the Milky Way. As a bonus, we also
know we are located about 27000 light years (∼8 kpc) from it.

Figure 6: Orbit of stars within 0.02 pc of the Sgr A* at the center of our galaxy. The
orbits around the unseen central mass and their associated orbital velocities make a
strong case for a supermassive black hole of 4 million solar masses. Image credits:
Andrea Ghez and UCLA Galactic Center Group.

But how integral is a SMBH to a galaxy? In the year 2000, an astonishing con-
nection was made between SMBHs and the origin and evolution of galaxies. By this
time, the astronomy community already began noticing that the larger the mass of
the central spheroid of stars9, the greater the central black hole’s mass would be; the
SMBH would weigh about 0.5-1% as much as the galaxy. Since mass can be scaled
to light, this implied that MBH and Lsph, the luminosity of the stellar spheroid, were
proportional quantities.

However, an even more compelling correlation was reported by two groups of
researchers. They found that for over two dozen nearby galaxies, MBH seemed to be
strongly correlated with the central velocity dispersion, σ, of a galaxy’s bulge [29, 30].
Functionally, this meant that the speeds of stars throughout the galaxies are directly
related to the mass of the SMBH at their centers! With small enough scatter, it was
found that MBH is directly proportional to the fifth power of σ:10

MBH ∝ σ5 (4)

The exciting aspect of this finding was that it was a “tight correlation.” The
observed scatter around the MBH-σ relation was found to be about 0.3 dex11 over
a large range of masses, most of which was attributed to observational errors. So

9see section 1.1.
10There is considerable controversy over whether or not this power is 4 or 5. See section 1.3.
11A dex is simply an order of magnitude. 0.3 dex translates to a factor of 100.3 ≈ 2.
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Figure 7: MBH-σ relationship for a sample of 72 galaxies found by McConnell & Ma
2013 [31]. The plot notes the galaxy type and method by which MBH was measured.

these data were so good, that after accounting for the measurement errors, all the
scatter was accounted for; suggesting that we could claim a new law of physics in
this M-sigma relation. Excitement spread from the fact that, based on this new
“law,” a difficult quantity to measure, MBH , could be estimated from a much simpler
observation to make, σ.

Was a fundamental relationship between SMBHs and their host galaxies found?
While we still don’t know the answer to this question, the moreMBH measurements we
made, the stronger the case became for a tight correlation between black hole mass and
velocity dispersion. Having taken caution in removing poorly resolved measurements,
the scatter in the MBH-Lsph relation is also reduced significantly, allowing us to make
a stronger case for relating the growth of a SMBH to the formation of the galactic
spheroid wherein it rests. Black hole mass measurements in nearby galaxies increased
from a few in 1998, to three dozens in 2004, to nearly three hundred by 2016 [32].
SMBHs have been discovered in most galaxies more massive than 10 billion M�, and
even in much smaller ones, the so-called “dwarf galaxies.”

We’ve come a long way since debating the existence of other galaxies. Heck,
we’ve come a long way since first wondering how quasars could shine ultra bright
despite being billions of light years away from us. Yet, the study of SMBHs has
barely scratched the surface of the treasure chest of information that awaits opening.
For starters, we don’t yet know how SMBHs form. Among the hypothesized origins
of a SMBH are the collapse of primordial gas clouds in the early universe and the
merging of several smaller black holes bound together in a cluster, although studying
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the exact physical mechanisms that create a SMBH is beyond the scope of this thesis.
If SMBHs and their host galaxies do co-evolve, what are the ways in which a SMBH
regulates the growth of its host?

While theoretical simulations are providing a wealth of insights, the fact remains
today, that our theoretical understanding of the topic can only advance with the
leaps made by our observational exploits. The BHMF is the primary empirical tool
available to us for investigating how SMBHs evolve. Regardless of the formation
scenario(s) we prefer, it sets interesting constraints on how SMBHs have grown up
to the present day. It’s also our gateway to characterizing the SMBH population in
terms of its one quantity we can measure, mass.

The scaling relationships between MBH and a galaxy’s properties allow us to
estimate the MBH for a much larger sample of galaxies than the few for which we
have MBH measured. This gives us a distribution function, or simply a number
density of galaxies for a given property, such as the aforementioned σ. By some
neat statistical machinery, we can convert this into a number density of SMBHs of
a given mass. This can lead to an estimate of the density of mass accumulated by
SMBHs to the present day, helping us better understand how they grow and how
much they grew. The number density, mass density, and the shape of the BHMF
are all important guiding stones in constructing a complete picture of the origins,
evolution, feeding habits, and eventual fate of SMBHs. While the primary goal of
this thesis is to gain insight into SMBHs by means of the BHMF, I will also engage
with how such an analytical tool can help us in uncovering useful science.





Chapter 1

Observations: Black hole masses and
velocity dispersions

This chapter starts with a brief overview of galaxies, their SMBHs, and aspects
of cosmology which we will be using later on. Then I move on to describe some of
the observations which will fuel my analysis, as well as describe where most of the
data on nearby galaxies I’m using comes from. In what follows, I will use the terms
“source” and “object” interchangeably.

1.1 Some background

1.1.1 The structure of galaxies and galactic nuclei

A galaxy is a system of stars, dust, interstellar gas, dark matter, and perhaps one
or more supermassive black hole(s), gravitationally bound together. Galaxies can be
as heavy as anywhere from 107 M� (dwarfs) to 1013 M� (giants). The earliest forms
of galaxy classification relied on morphological characteristics. Visual morphology
was the key to Hubble’s (1926) famous classification scheme, often referred to as the
“tuning fork diagram” (Fig. 1.1). The so-called Hubble sequence divides galaxies
into 3 main categories: elliptical, spiral, and lenticular, and 1 secondary category for
irregular galaxies – those that don’t fit any of those defined shapes. Hubble envisioned
the tuning fork diagram to be an evolutionary sequence – so that galaxies evolved
from the early-type ellipticals and lenticulars on the left-hand side to the late-type
spirals on the right. The picture, in reality, is far more complex than simple visual
characteristics however, since we need to take into account crucial features such as
star formation activity and history of interaction, or mergers, with other galaxies.
Regardless, his nomenclature is still useful for quickly differentiating between the
main types of galaxies we observe, so I will refer to elliptical and lenticular galaxies
as early type galaxies and spiral galaxies as late type galaxies.

When present, SMBHs are always found in galactic nuclei, whether they be in
the spheroid (or ellipsoids) of stars making up an elliptical galaxy, or in the central
bulge of stars in a spiral or lenticular galaxy. Ellipticals are almost entirely smooth
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Figure 1.1: The tuning form diagram, illustrating the Hubble sequence. Ellipticals
(E0-E7) and lenticulars (S0) are referred to as early-type galaxies, while barred spirals
(Sa-Sc) and unbarred spirals (SBa-SBc) are referred to as late-type galaxies. Image
credits: Hubble.

and featureless: all the stars are contained in their stellar spheroids. Meanwhile,
spiral and lenticular galaxies have more parts to them – a bulge of stars and a central
disk cutting through it. Spirals, as the name suggests, also have a number of spiral
arms. Elliptical spheroids and lenticular bulges are known to rotate slowly, while
spiral bulges are fast rotators. The one true similarity between spheroids in early
and late type galaxies is the light distribution, or the surface brightness profile, I(r),
which is well-described by a power law: I(r) ∝ r1/n (where r is the projected distance
from the center and n an integer known as the Sérsic index1). I will hereafter refer
to spheroids and bulges as simply spheroids, and in the discussion that follows, the
distinction isn’t very important.

The leading theory of SMBH growth is the idea that they grow by accretion of
matter during active phases. As mentioned in the introduction, the Soltan argument
made it clear that accretion needs to occur in phases in order to build up the mass
density of SMBHs we observe today. Consequently, we have an accepted paradigm,
where the nearby galactic nuclei (including our own) with relatively quiescent SMBHs
must have had some active phases, where they shone spectacularly, at earlier times.
Evidently then, much like star formation, mass accretion on to SMBHs is a cyclic
process.

1I refer the reader to de Vaucouleurs [33] and Sérsic [34] who provide some of the first mathe-
matical modeling of light distribution in galaxies.
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1.1.2 Observational Cosmology

The model of cosmology most widely used today is generally known as the stan-
dard model of cosmology, or Λ-CDM (Cold Dark Matter) cosmology. The
Λ-CDM model postulates a beginning of time with the Big Bang, the subsequent
expansion of the universe, and since about five billion years ago, expansion at an ac-
celerated rate. According to the model, only ∼5% of the universe we know and love
is made up of ordinary, baryonic matter we can observe. ∼25% is the elusive dark
matter2 and the remaining ∼70% is a mysterious vacuum pressure which causes the
acceleration of the universe, termed dark energy. To parametrize these constraints,
we use dimensionless density parameters:

ΩM + ΩΛ + Ωk = Ω0, (1.1)

where Ω0 is the critical density of the universe, which through recent observations,
is given a value of 1. The critical density is the particular density that ensures both
that the Universe will not expand forever, and not collapse back on itself. ΩM and
ΩΛ are the ratios of the average density of matter and dark energy in the universe,
respectively, to the critical density. Ωk describes the curvature of space-time, which
we assume to be geometrically flat, i.e. a curvature of zero. Hence, in Λ-CDM, we
use ΩM = 0.3, ΩΛ = 0.7, and Ωk = 0.

Distances in Cosmology

Because of this complicated business of sources perpetually moving away, distance
measurements in cosmology are much more complicated than taking a measuring de-
vice and measuring the “length” between two points. The present rate of expansion of
the universe is expressed as the Hubble constant, H0, which describes the recession
speed, v, of a galaxy as it moves away from us, in terms of its distance, d, from us:

v = H0d. (1.2)

where the value of the Hubble constant is given by H0 = 100h km s−1 Mpc−3.
h is a dimensionless number that “parametrizes our ignorance,” according to David
Hogg (1999). At the time of writing, the most recent and accurate observational
determination of the Hubble constant places it at H0 = 73.24 ± 1.74 km s−1 Mpc−3

[35]. In Λ-CDM cosmology, it is conventional to take h = 0.7, so I take H0 = 70 km
s−1 Mpc−3 throughout my calculations.

I will use the following distance measures as outlined in Hogg (1999) [36]:

• The Hubble distance, DH : The distance light travels in the Hubble time, which
is the inverse of the Hubble constant:

DH =
c

H0

= 3000 h−1 Mpc. (1.3)

2The dark matter is said to be “cold” because it is non-relativistic, hence moving slowly, during
the era of structure formation.
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• The comoving distance: The distance between two objects which remains
constant with time, so it accounts for the expansion of the universe. The co-
moving distance of an object from us, DC , is given by:

DC = DH

∫ z

0

dz′

E(z′)
, (1.4)

where z is the object’s redshift and E(z) is a function defined as:

E(z) =
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ. (1.5)

If one were to take a gigantic ruler and measure the distance between, say a dis-
tant galaxy and us, DC is what they would get. Hence, it’s the most important
distance measure in cosmology. I will use this distance for computation of both
the Velocity Dispersion Function (VDF) and the Black Hole Mass Function
(BHMF).

• The luminosity distance: Distance of an object shining with bolometric (in-
tegrated over all wavelengths) luminosity, L, and bolometric flux, S, defined
as:

DL =

√
L

4πS
= (1 + z)DC . (1.6)

DL is useful for determining the absolute (true) magnitude of a source.

Please refer to Hogg (1999) for derivations and more details on these distance
measures.

1.2 Measuring black hole masses
Mass is the primary property of a SMBH and measuring aMBH is often considered

parallel to finding evidence for a SMBH in a galactic center. MBH measurements are
– especially for nearby galaxies – dynamical: we observe the motion of stars, gas, or
other matter near the center and infer a force responsible for this motion. Newton’s
law of gravity (eq. (1)) helps us easily calculate the mass that caused this force.
Kinematical data, such as Doppler shift measurements or integrated stellar spectra,
must be resolved spatially on angular scales where the gravitational force is dominated
by the SMBH.

The distance within which a central SMBH affects the motion of gas or stars is
called the gravitational influence radius, rh. Within rh, the gravitational potential
of the SMBH dominates the gravitational potential of the host galaxy. There are two
definitions of rh;
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1. The radius at which the enclosed mass of stars, M?, equals twice the SMBH
mass, i.e:

M?(r <rh) = 2MBH . (1.7)

In a galaxy with mass distributed spherically, at r=rh, 1/3 of the gravitational
force comes from the SMBH and 2/3 is from stars. The difficulty in applying
this equation to real galaxies is that the stellar mass density is very rarely
well-defined inside rh.

2. The radius at which the velocity of a circular orbit around the SMBH, vc, is
equal to the stellar velocity dispersion, σ:

rh =
GMBH

v2
c

=
GMBH

σ2
. (1.8)

σ, as will be defined soon, is the dispersion about the mean velocity of stars. If
the velocity distribution is isotropic, then σ = vrms/

√
3, where vrms is the root

mean square (rms) velocity of stars of a galaxy. σ can easily be obtained from
the 1-D line-of-sight velocity dispersion from an integrated spectrum of stars,
within an aperture centered on the SMBH.

The appropriate definition of rh to use depends on the physical situation being
addressed. Definition 1 compares the force from the SMBH to the local force from the
stars and is appropriate for interpreting the motion of gas moving in nearly circular
orbits around the SMBH. Definition 2 compares the local gravitational effects of the
SMBH with the overall effect of the bulge on the motion of the stars. Proper stellar
motion or stellar spectrum techniques are useful for this definition. The sphere of
influence of a SMBH must be well-resolved in order for a dynamical measurement of
MBH . This is why there are only a handful of such measurements in nearby galaxies.

Below, I briefly describe some of the most common methods of measuring SMBH
masses dynamically and offer an alternative method of estimating MBH via empirical
scaling relations between MBH and properties of the host galaxy, especially stellar
velocity dispersion, σ.

Stellar dynamics

Integrated stellar dynamics has been a popular method of measuring SMBH
masses since the early days of SMBH research and remains the most widely used
method. Stars are reliable in that they’re always present near galactic centers and
their motion is always gravitational. At the scale of rh, Newtonian gravity works
quite well in predicting the motion of objects around the SMBH. Assuming spherical
symmetry of the galaxy, we can get the mean acceleration (a) of a star as the gradient
of its gravitational potential, φ3:

3Not to be confused with the upper-case Φ I’ll be using to denote distribution functions later on.
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5φ =
∂φ

∂r
= a, (1.9)

where r is the projected distance from the center. This enables us to approximate
the mass of the black hole, MBH :

G [M?(r) +MBH ] ≈ rv2
rms. (1.10)

Here, M?(r) the mass of stars as a function of r, and vrms is the rms velocity
of stars, as above. vrms can be measured from how much the absorption lines in
an integrated spectrum of stars are broadened. Space-based spectrographs such as
the HST’s Space Telescope Imaging Spectrograph (STIS) have taken such spectra for
dozens of galactic centers. The r−1/2 dependence of the rms velocity on the radius
is a classic sign of a SMBH, and by virtue of Newtonian mechanics, this happens
to be the same dependence shown by orbital velocities on the solar system planets.
In other words, we have a “Keplerian” dependence. Of course, there’s a lot more
detailed modeling and practical considerations one needs to take into account when
attempting to use stellar spectra to measure a black hole mass. These are discussed
in detail in Merritt (2013) [37] and Ferrarese & Ford (2005) [38].

A major problem with this method is that spatially resolved data needs to extend
to about 10% of the gravitational influence radius, rh, which makes it hard to use
this technique for galaxies much further than the Local Group. Additionally, a high
spectral signal-to-noise ratio is desirable.

Gas dynamics

For several galaxies, there exist relatively regular disks of ionized gas orbiting
around the central SMBH. The rotation curve of these gas disks gives us the rotational
velocity of the gas, vc. By the same Newtonian formulation, we can obtain the black
hole mass from vc:

v2
c (r) =

G(M?(r) +MBH)

r
. (1.11)

With stellar dynamics, since we’re taking integrated stellar spectra, stellar ve-
locities measured near the SMBH are impacted by stars that orbit to much greater
distances, thereby “contaminating” the measurements. This is not a problem for gas
disks. Moreover, gas measurements are averaged along the line of sight, so there’s
less weakening of the signal, which is always a problem with stellar dynamics. But
perhaps the biggest advantage of using gas dynamics is that the motion of stars is
inherently complex. For example, the rms velocity of stars may differ by direction,
due to the random motion of stars. Meanwhile for regular gas disks, there is very
little to no random motion as such and there is velocity is only in the circumferential
direction.

If a gas disk is present in a galactic center, all we require for detecting a SMBH
is that velocity data exist inside rh (which guarantees that MBH> M? in eq. (1.11)).
Many galaxies beyond the local group show a clear rise in gas velocities near the
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Figure 1.2: Rotation curve of the ionized gas disk in the giant elliptical galaxy M87
(from Macchetto et al. 1997 [26]). The different lines correspond to different model
fits to the data, all of which require the presence of a high central mass concentration.

center. The modeling for gas kinematics is a much more straightforward process than
for stellar kinematics: either you detect Keplerian motion, in which case a SMBH
mass can be measured, or you don’t, in which case MBH can’t be measured.

But there’s one major issue with this method of MBH measurement: gas, unlike
stars, is affected by non-gravitational forces. So, things like pressure and radiation
can disrupt the regular structure of ionized gas disks and introduce uncertainties
in measurements made using them. Because gas disks can be accelerated by non-
gravitational forces, the Keplerian rotation may be disturbed. Also, there’s the prob-
lem of relatively few galaxies containing a nice, regular disk of ionized gas orbiting
the center.

Water maser clouds

In a small class of active galaxies, we have the opportunity to measure the ro-
tation of nuclear matter at much higher resolutions than stellar or gas kinematical
techniques. These galaxies contain what are known as water masers. These are
produced when X-rays from the innermost accretion disk around the central SMBH
heat up a torus of dense circumnuclear gas and dust [39]. The term maser4 stands
for Microwave Amplification by Stimulated Emission of Radiation. A maser is pro-
duced when water molecules absorb energy from their surroundings and re-emit it in
the microwave. Similarly, in some galactic nuclei, dense clouds of water molecules
surrounding the SMBH accretion disk are stimulated, by accretion disk X-rays, into

4think laser
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emitting microwave radiation.
The maser emission, which occurs at 22 GHz, can be studied by radio interfer-

ometers such as the Very Large Baseline Array (VLBA) at spatial resolutions > 200
times that of optical telescopes such as the HST. This leap in resolution corresponds
to an ability to detect much less massive SMBHs. Maser clouds exhibit Keplerian
motion similar to gas disks and stars around a SMBH. This can be exploited, using
a similar Newtonian formalism, to obtain the mass of the black holes around which
they orbit.

AGN reverberation mapping

In non-quiescent, active galaxies – even if they’re close enough that their SMBH
sphere of influence can be reasonably well-resolved – the nuclei are too bright and
point-like (as a result of the gaseous, active accretion disk). This diminishes the fea-
tures in the sphere of influence that are necessary to make dynamical measurements.
For these galaxies (AGNs), reverberation mapping can be used to find a measurement
of MBH .

Figure 1.3: AGN structure, showing the Broad Line Region (BLR). Figure from Bentz
(2015) [40].

The emission spectra of AGNs show broad emission lines – such as those in the
Hydrogen Balmer series – in the optical and ultraviolet. The line widths are presumed
to show Doppler broadening and can be mapped on to a velocity broadening function.
The quantity of interest from this function is its ∆V , the Full Width at Half Maxi-
mum (FWHM). The accretion disk around the central SMBH produces a high-energy
continuum that varies with time and photoionizes gas in the central ∼ 0.01 pc of the
SMBH (a model of AGN structure is shown in Fig. 1.3). The broad emission-line
fluxes respond to the changes in the flux from the continuum source, implying that
photons from the accretion disk are responsible for the emission lines. However, light
travels at a finite speed, so there’s a delay between a change in the continuum of the
accretion disk and the subsequent response of the emission lines. The region in which
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this delay takes place is called the broad line region (BLR). Thus, if we can measure
the size of the BLR via the delay time, and we’re equipped with the observed ∆V ,
we easily recover MBH :

GMBH = fRBLR(∆V )2. (1.12)

Here, RBLR is the radius of the BLR, and f is a “form factor” – a constant between
0 and 1 that depends on the geometry and kinematics of the BLR. The form of the
BLR is difficult to ascertain and requires high-quality, extensive 3D data, for which
f is often determined by modeling the BLR first.

A special case: proper stellar motion in the galactic center

(a) Orbit of S0-2 (b) Radial Velocity of S0-2

Figure 1.4: a) Orbit of star S0-2, showing its apparent position in the plane of the
sky in a ∼ 16-year period, and b) Radial velocity, with the black line showing the
prediction from the orbital fit, from [41]. The red and blue data points are observa-
tions from W.M. Keck telescopes and the Very Large Telescope (VLT), respectively.
The data from these two different observatories produce the same result of a central
SMBH of 4.3× 106 M�.

In the central arcsecond of the Milky Way (∼2 light-months), lies about 20 bright
stars clustered close together. These so-called “S-type stars” have Keplerian orbits
which we can model very easily and their positions are studied in very high resolution
(in the order of a tenth of a milliparsec) by ground-based telescopes such as Euro-
pean Southern Organization’s (ESO) Very Large Telescope (VLT) in Chile and the
Keck Telescopes on Mauna Kea. Continuous monitoring of the positions and radial
velocities of S-type stars in the nuclear star cluster have enabled us to determine their
elliptical orbits and measure the period of those orbits.

By Kepler’s third law, the period of an orbit, T , is given by:
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T =
2πa3/2

√
GMBH

≈ 1.48

(
MBH

4× 106 M�

)−1/2(
a

10−3 pc

)3/2

yr, (1.13)

where a is the semi-major axis of the orbit. A decade ago, the star named S0-
2 completed one full 15.8 year-orbit around the focal point (Fig. 1.4). S0-2 and
another star have come within 5 microparsecs (µpc) of the center, where they were
both observed to move at over 10000 kms−1 – extraordinary for stars. Over 2 dozen
stars near the center have orbits that are fit extremely well by a central potential
from a single mass of 4.3± 0.5× 106 M� [41, 42, 43].

1.3 Estimating Black hole masses: A secondary
method

The methods described above only allow us to calculate SMBH masses for a hand-
ful of galaxies. If you go far enough (which isn’t very far, cosmologically speaking),
you lose the ability to resolve a SMBH’s sphere of influence. Estimating MBH is no
mean feat – high resolution observations, intelligent modeling of galactic centers and
the central potential, and rigorous assessment of the random and systematic errors
involved in the process are only some of the challenges. But knowing MBH alone for
a few, or even hundreds of, galaxies doesn’t give us much meaningful statistical in-
formation about SMBHs in general. How does one estimate MBH for galaxies further
away than their rh can be resolved or even for a large set of galaxies?

The answer lies in one of the oldest tenets of observational astrophysics: find phe-
nomenological relations from empirical data. There exist many famous examples of
such relationships which are foundational to the field, including the aforementioned
Period-Luminosity relation of Cepheid variables, the Mass-Luminosity relation (where
the luminosity of a stellar object is proportional to some power of its mass),the
Tully-Fisher relation for spiral galaxies (which relates mass or intrinsic luminosity,
for example, to angular velocity of width of emission lines), and the main sequence
of stars (where stars belonging to this sequence lie on a well-defined temperature-
luminosity line). In astronomy, where a lot of research is open to contestation and
many fundamental questions are still unanswered, clear, unambiguous patterns in the
observations made can be incredibly useful tools for moving forward. Observed rela-
tionships can inspire the search for the underlying physics that explains them, even
if potential explanations are murky.

In that vein, we were fortunate enough to observe various relationships between
SMBHs and properties of their host galaxies. As early as 1995, Kormendy and Rich-
stone found that the 8 galaxies for which secure MBH measurements existed at the
time, MBH was about 2-3% of the mass of stars in the host galaxy [44]. Over time, it
was established thatMBH correlates strongly with Lsph, the luminosity of the spheroid
of the host galaxy (which correlates with mass). Observations of Lsph carried out at
various wavelength bands from the optical to the near infrared have confirmed a
correlation of the form:
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log MBH = a+ b log y, (1.14)

where y is Lsph at a given waveband. The scatter around the correlation has
been observed to decrease as the sample is reduced to only elliptical galaxies. The
best correlation of MBH-Lsph showed an intrinsic scatter of about 0.3 dex, less than a
third of a magnitude [45]. Relationships have also been found betweenMBH and other
properties of the host galaxy, including n, the Sérsic index of light distribution, and
light concentration, which is the ratio of the fluxes within two different radii (usually
one-third of the half-light radius to the half-light radius. Much like it sounds, the
half-light radius, Re, is the radius within which half the total light of a galaxy is
contained5).

The M-sigma relation

However, a stronger correlation was found between MBH and σ, the central veloc-
ity dispersion of the galaxy – the so-called M-sigma relation. Both Gebhardt et. al.
[30] and Ferrarese & Merritt [29] found a significant difference between this and the
MBH-Lsph relation, which can be seen in Fig. 1.5. When one includes only measure-
ments for which they could spatially resolve data within rh, the MBH-Lsph relation
barely shows a difference in the scatter, however MBH-σ becomes a lot tighter. At
the time, this was interpreted to mean that the scatter in the M-sigma relation can
be accounted for by looking at measurement errors alone. This zero intrinsic scat-
ter in the relation implied there is something fundamental about this relationship.
The growing number of studies in years following those pioneering works discounted
the notion of zero intrinsic scatter in MBH-σ, but it consistently produced strong,
low-scatter correlations for many different data sets.

However well MBH correlated with σ, there was raging debate in the years follow-
ing the discovery about the slope of the correlation, i.e. the value of b in eqn (1.14).
The disagreement was between slopes of ∼4, as reported by [30], and ∼5, as found
by [29]. Possible explanations for this difference were: a) different fitting procedures,
i.e. algorithms, were used to fit the linear regression of log MBH and log σ, b) Some
galaxies were included for which rh were not resolved, as discussed above, and c) sys-
tematic differences in the velocity dispersion measurements used by the two groups,
including systematic errors in such measurements [46, 47].

But procedural differences aside, the disagreement in the M-sigma slope is im-
portant because of the underlying theoretical models that support different values of
the slope. While going too far into the details of the physical modeling of SMBHs
and AGNs is beyond the scope of this thesis, it’s worth illuminating some of the
fundamentals of those models. First, we assume that SMBHs are initially “seeded”
as black holes with MBH ∼ 106 M�, after which they grow by accretion of matter
onto them. The notion of seeding is justified because quasars have been discovered at
z ∼ 7, so SMBHs had already been in place just 800 million years after the big bang,

5Watch this come into play later.
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Figure 1.5: MBH-Lsph (left panels) and MBH-σ (right panels) relation for a sample
fo 13 galaxies from Ferrarese & Merritt [29]. The top panels show the relationship
for galaxies where rh, the SMBH sphere of influence, were resolved, while the bottom
shows the entire relationship.

giving very little time for alternative initial scenarios like dense, high-mass nuclear
star clusters collapsing in on themselves6.

If one is to consider relations like the M-sigma as physically fundamental aspects
of SMBHs, then there arises the need to preserve the relation throughout cosmic time.
A lot happens from the time of the first stars to the present day: especially important
are ultra-violent events like galaxy mergers – in some cases these merge the central
SMBHs too – which can change the structure of an entire galaxy and feed tremendous
amounts of gas to the nucleus. How then, do galaxies and their SMBHs regulate this
relationship?

This begets the need for some sort of “negative feedback,” which acts as a self-
regulating mechanism for SMBH growth. The radiation field from an accreting SMBH
causes gas to flow outwards. These outflows can expel the ambient matter from the
surroundings of the SMBH once the SMBH reaches a critical mass (or energy), halting
its growth. This critical mass is the mass that produces enough energy to exceed the
binding energy of the galactic spheroid as material falls into the black hole. The form
of the outflow is treated differently by the different models of SMBH formation and
growth. If the gas in the outflow doesn’t cool, then all of the energy produced by
the SMBH can be used to drive the gas outward. This “energy-driven flow” requires
that MBH ∝ σ5 for the mass required to unbind the spheroid so that feedback can

6See Rees (1984) for a fascinating discussion of possible creation mechanisms [48].
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be initiated. On the other hand, if all of the energy in the flow is kinetic, we have
a “momentum-driven flow.” Here, radiation pressure from the active SMBH is the
driver of the outflow and we require that MBH ∝ σ4 [37]. Observations at low and
high redshifts support the energy-driven outflow hypothesis, which agrees with the
empirically observed slope of ∼ 5 in M-sigma. Numerical simulations over the past
few years have reproduced the tightness of the M-sigma relation as we observe today,
with some favoring momentum-driven outflow feedback models and some energy-
driven outflow [49, 50].

The M-sigma relation has been used to test our estimates of MBH in nearby
galaxies derived from existing observations. For instance, measurements from AGN
reverberation mapping were seen to be a few to a hundred times larger than the scaled
value from the relation. The errors, which correlated with decreasing instrumental
resolution of the measurements, highlighted the uncertainties inherent in claiming a
MBH value from direct measurements [46]. In any case, by using a scaling relation in
the form of eqn (1.14), it is possible to estimate MBH of a SMBH in any galaxy for
which we have an easy-to-measure property, such as Lsph or σ.

In section 2.2, I use the most comprehensive list of MBH to date, along with the
M-sigma relation observed in those galaxies, to individually estimateMBH for a large
sample of local galaxies (at 0.03 6 z 6 0.1).

1.4 Data and sample selection
Our first step in estimating the BHMF of SMBHs in nearby galaxies is to obtain

the central velocity dispersion, i.e. the velocity dispersion within the central 1.5
arcseconds of a galaxy (1.5′′). This I will call σ. The photometric and spectroscopic
observations were obtained from the Sloan Digital Sky Survey (SDSS). The σ values
I use are from reduction of spectra from SDSS, performed by the Portsmouth group
and accessible as publicly available catalogs7.

1.4.1 Velocity dispersion of galaxies

Dispersion, in statistics, gives the spread around the mean, of a distribution of a
measurement or quantity. Measuring the velocities of gravitationally bound sources
of light within a given region gives us a distribution of velocities, since some of these
sources move faster than the others. The velocity dispersion, σ, is simply the sta-
tistical dispersion about the mean velocity in this distribution. A combined spec-
trum (superposition of many stars) has emission lines which are Doppler-shifted, i.e.
widened, and this width can be used to obtain σ. Since most emission line widths
follow a Gaussian distribution, the central area encompassing 68% of the area of a
line gives us the standard deviation, also known as the ±1σ of the distribution.

The velocity dispersion of a galaxy measures the random, line-of-sight motion of
stars due to a gravitational potential well. The stellar spheroids we’ve been con-
cerning ourselves are usually slow rotators (though late-type galaxies are overall fast

7http://www.sdss.org/dr14/spectro/galaxy_portsmouth/

http://www.sdss.org/dr14/spectro/galaxy_portsmouth/
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rotators). This is why the motion of stars is random with respect to a spheroid,
since the spheroid’s rotation doesn’t impact them enough that they’re bound to move
in a preferred circular direction. As a result, σ reflects the dynamics of the stellar
population of a galaxy. This is why it’s very curious that a SMBH, which occupies
only a very small area at the center of a galaxy’s spheroid – with radius the order of
milliparsecs (mpc), while a galaxy’s size is typically in the kiloparsecs (kpc) – is so
closely linked to the the random motion of stars very far away from it, as evidenced
by the M-sigma relation. Perhaps this suggests something fundamental about how
the formation and growth of SMBHs and their host galaxies are tied together.

Since it directly probes the gravitational potential well, σ is a fundamental ob-
servable of a galaxy, tying it to the galaxy’s formation and evolution. σ has been
correlated with other observables such asMBH as mentioned above, and the luminos-
ity of elliptical galaxies – via the Faber-Jackson relation [51]. And recently, significant
attention has been devoted to using σ in understanding properties of the halo of dark
matter (DM) surrounding galaxies. Since DM makes up about 70-80% of the total
matter in the universe and is one of the key building blocks of galaxies and the uni-
verse in large scales, this is a powerful new probe in deciphering our cosmic origins.
Studies of velocity dispersion and the velocity dispersion function (see section 2.1)
of galaxies are interesting by themselves, but I will use them primarily in mapping
out the BHMF and understanding what the observational constraints tell us about
SMBH growth and their relationship to their host galaxy.

Velocity dispersion measurements are made from spectroscopy, which eliminates
the biases in photometry inherent in determining quantities such as luminosity or stel-
lar mass. Though this also requires high signal-to-noise ratio spectra, the alternative
method of obtaining σ is by using the aforementioned Faber-Jackson relation. This
states that L ∝ σ4, so by simply measuring the luminosity of a spheroid, one gets
an estimate of velocity dispersion. Though this is less observationally taxing since
photometry is simpler in principle than spectroscopy, it produces far more uncertain-
ties than we need to deal with. For one, photometric measurements need various
corrections, including instrumental biases. Then there’s the issue of L depending on
the Hubble type of a galaxy – elliptical, spiral, or lenticular – which is not an issue
with just measuring σ. Last but not least, the L− σ4 relation has significant scatter
and is not well-defined for spiral bulges or non-ellipticals in general.

1.4.2 Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS) saw first light in 1998 and entered routine
operations from 2000. Since then, it’s collected spectra of over a million galaxies
and 100000 quasars, and imaged over half a billion objects in the sky. The survey
uses a wide-field 2.5 m telescope located at the Apache Point Observatory (APO)
in New Mexico, which has an imaging camera with 30 CCD chips and two double
spectrographs8. Images are taken in five different wavelength bands: u, g, r, i, and z.
The survey has so far imaged more than 14000 square degrees of the sky – about a

8Imaging mode retired in 2009. Need to run a goroutine for this am I right?
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Figure 1.6: Figure showing the information available from SDSS on small and large
scales. Top panels: SDSS view of the galaxy M33, with different zoom-ins. Bottom
panels: A map of the whole sky derived from an SDSS image, showing the clusters
and walls of galaxies, i.e. the largest single structures in the entire universe. Figure
credit: M. Blanton and SDSS

third of it. This makes it the largest, most comprehensive survey and information
repository for nearby galaxies. A summary of the survey and its early data release is
described by Stoughton et. al. (2002) [52], the technical details given by York et. al.
(2000) [53], and the main galaxy sample is detailed by Strauss et. al. (2002) [54].

The imaging data are used to select “spectroscopic targets”: objects in the sky
above a certain observed brightness, or flux level. For SDSS, this limit corresponds to
an apparent magnitude in the r-band – in the Petrosian system [55] – of rp < 17.77
mags. Spectra are only taken of objects brighter than this apparent magnitude.
Spectroscopic information exists for a million and a half galaxies as of today, including
nearby ones up to a redshift (z) of 0.7 and quasars up to z = 6.

Of these, there are galaxies that are active at their centers, and those that are
quiescent. I obtained σ measurements of nearly 1 million (∼950000) galaxies from
the SDSS main galaxy sample from its 12th data release. In particular, I use the
σ measurements from the Value Added Catalogs of the Portsmouth group [56], who
make use of SDSS spectra to derive kinematics and emission line properties of these
galaxies. They use the Gas and Absorption Line Fitting (GANDALF9) [57] code
to fit the spectrum of a galaxy to templates of stellar population so that the stellar
continuum and absorption lines from the ionized gas can be separated (the models are
from Maraston & Strømback [58] and based on the libraries from [59]). By comparing

9In keeping with the proud tradition of acronyms that will make you chuckle or shake your head
(or do both).
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the SDSS spectra and the templates, the best-fit velocity dispersion within 1.5′′ of the
center was derived for each galaxy, using the Penalized PiXel Fitting (pPXF) code
[60]. The templates are capped at σ = 420 km s−1, so that is the upper limit of reliable
measurements for our sample. Furthermore, measurements of σ .70 km s−1 have low
signal-to-noise (S/N) ratio of data, so they are unreliable too. The σ measurements
from the Portsmouth group all have S/N>10 and the median uncertainty is 7 km s−1.

I also obtained photometric data from the catalogs, primarily in order to obtain a
statistically complete sample of galaxy σs, which will be described in detail in the next
chapter. Of particular interest to my analysis are the apparent r-band magnitudes, rp,
based on which targets are selected for spectroscopy. These observed brightnesses are
converted to absolute magnitudes, defined as the apparent magnitude an object would
have if it was exactly 10 pc away from us. However, we’re taking magnitudes from a
fraction of the electromagnetic spectrum, instead of integrating over the whole thing,
meaning that light in that band will be redshifted to the rest-frame of the observer
(us) by the time it gets to us. The way to deal with this pesky bias is to introduce
what is called a “K-correction,” which makes it possible to compare measurements
through a single band, of different objects at different distances (hence redshifted by
different amounts). To get from the observed rp to the absolute r-band magnitude,
Mr, we use:

rp = Mr +

[
5 log

(
DL

10pc

)]
+Kr(z), (1.15)

where Kr is the K-correction for the r-band – dependent on the comoving distance
DC – and DL is the luminosity distance (in pc). The K-corrections I used were the z
= 0 corrections from the NYU value added galaxy catalog [61]. I apply a K-correction
to each galaxy and find that the mean Kr is ∼0.175 mags. From here on out, I will
refer to the K-corrected absolute r-magnitude as Mr.

For my sample, I only use galaxies at z 6 0.1, which corresponds to DL ∼ 460
Mpc, or ∼1.2 billion light years. This allows me to construct a BHMF of the local
universe, which is a rather arbitrary term to describe the current-day universe as it
appears to us, but I define it to mean z 6 0.1. This redshift cut brought down the
sample size to ∼364000 galaxies.



Chapter 2

Analysis: Velocity dispersion and
SMBH-host galaxy correlation

2.1 The Velocity Dispersion Function (VDF)
Our [scientific] understanding comes through the development of theoret-
ical models which are capable of explaining the existing observations as
well as making testable predictions...Fortunately, a variety of sophisticated
mathematical and computational approaches have been developed to help
us through this interface, these go under the general heading of statistical
inference.

- P. C. Gregory (2005)

Statistical methods have been employed by astronomers for decades to understand
global properties of objects we observe in the universe. These methods have been
used, along with some reasonable starting assumptions, to make inferences beyond
the dataset(s) themselves, about the underlying population under study. The first of
the statistically-derived properties studied in this thesis will be the Velocity Dispersion
Function. The VDF is a statistical distribution of the central velocity dispersions,
σ, for a sample of galaxies. It is defined as the number density of galaxies per unit
magnitude (dex) of σ.

For a sample of galaxies – let’s call it S – the number of galaxies with velocity
dispersion σ in an interval of width dσ is given by NS(σ)dσ. If the volume sampled
at velocity dispersion σ is VS(σ), then the VDF of sample S is given by:

ΦS(σ)dσ =
NS(σ) dσ

VS(σ)
. (2.1)

Now, we make an assumption, which is backed by observations. We assume the
universe is homogenous on large scales – scales & few hundreds of Mpc – meaning
that a property derived for a volume on these scales should hold globally for all of
space. This is pretty apparent if one compares one patch of the sky a few hundred
Mpc across with another patch of the same length – they observe virtually the same
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distribution of matter1. Thus, if we randomly choose a sample S, in the limit of large
sample volume, we approach a universal limit for galaxy VDFs:

Φ(σ) = lim
VS(σ)→∞

ΦS(σ). (2.2)

This assumption helps us obtain a global VDF for galaxies by constructing a
VDF for a select sample of galaxies contained in a large enough volume, thereby
circumventing the problem of only being able to find a VDF for a finite sample of
galaxies (phew!). The same idea is applied toward estimating the mass distribution
of SMBHs in the next chapter, i.e. in constructing the BHMF.

2.1.1 Selection Effects: Completeness of the sample

If we want to statistically analyze properties of a galaxy population like the VDF,
we require a sample that covers the entire distribution of the properties under study:
absolute magnitude, Mr, and velocity dispersion, σ. We want to make sure that our
sample is complete; that it’s not biased toward any property. Completeness analysis
helps us ensure that our sample isn’t preferentially selecting, say just the brightest
galaxies or the highest σ galaxies. As an analogy, consider a statistical study of
the population of a town that randomly samples a number of people living in the
town. There is a possibility that this random selection could have a large number
of middle-aged people and males, which would bias the sample in terms of age and
gender. Thus, it may not be representative of the true population of the town. In
much the same way, I want to ensure that my final sample is representative of the
true population of galaxies, covering the full range of σ. To construct a statistically
complete sample, I follow the approach outlined by Sohn et. al. (2017) [62].

I’ve already restricted my sample size to z 6 0.1, which makes it a volume-limited
sample. However, as mentioned in section 1.4.2, SDSS spectroscopy is only complete
for objects above rp = 17.77 mags, making it a magnitude-limited sample. The
magnitude-limited sample is complete in apparentmagnitude, not absolutemagnitude,
Mr, which by eq. (1.15) depends on redshift z. So, the survey is only complete up
to a magnitude limit, Mr,lim, for any volume limited by zmax, the maximum z of that
volume.

This is illustrated in Fig. 2.1a, where the magnitude, Mr, is plotted against the
redshift, z, for a sample that is limited to a volume contained in z 6 0.09. The vertical
dashed red line gives the maximum redshift, zmax = 0.09 of this volume-limited
sample. The SDSS spectroscopic survey limit, given by the black line, intersects with
zmax at Mr = −20.36, which is given by the horizontal dashed red line. So within the
volume contained in z 6 0.09, this sample is complete for galaxies with Mr 62−20.36
(these are the blue points in Fig. 2.1a). The sample of galaxies with Mr > −20.36
is therefore incomplete in absolute magnitude and thus rejected – these are the grey

1By the way, this is one of the fundamental cosmological principles that observational astronomy
relies upon.

2Mr goes the opposite way from normal quantities, so the more negative it is, the brighter an
object is.
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points below the horizontal line in Fig. 2.1a. So if we were to derive a VDF based on
the sample constituting just the blue galaxies, it would be complete to Mr = −20.36.

But there’s more to it. Fig. 2.1b plots the logarithmic velocity dispersion, log σ,
against Mr, with the vertical dashed line indicating Mr,lim for a redshift of 0.09.
The first thing to notice here, is the large scatter in the σ distribution at any given
magnitude. For instance, at Mr = −20.36, log σ can range from ∼1.7 to ∼2.5, so σ
varies from ∼50 km s−1 to ∼315 km s−1 for this one fixed magnitude! Converting
Mr,lim to a limit at which σ is complete is therefore not a trivial exercise, and my
sample is only complete in Mr, not in σ. Everything to the right of Mr,lim in Fig.
2.1b is included in the magnitude-limited sample, but there are many galaxies with
very low σ compared to others in this sample. This is concerning, because galaxies
with relatively low σ make it into the sample by being bright enough while others at
comparable σs are rejected because they don’t make the brightness cut. This biases
my sample toward brighter galaxies.

So how do we make sure we have a sample that is not only complete in the
distribution of Mr, but also σ? The diagonal black curve amidst the blue points in
Fig. 2.1b reflects the 95th percentile of the σ distribution up to the magnitude limit.
95% of the sources with Mr 6 Mr,lim have σ below this limit. By fitting a best-fit
line to the curve, the red dotted slope, we can find the intersection of this limit with
Mr,lim. The horizontal level corresponding to this intersection (the horizontal black
dashed line) gives us the all-important σ-completeness limit, i.e. the minimum σ for
which this sample is ∼ 95% complete. For each volume-limited sample (with the
z 6 0.09 sample shown), let’s call this limit σlim,VL. Very few galaxies fainter than
Mr,lim should have σ > σlim,VL. The criterion for a σ-complete sample then, is σ >
σlim, i.e. only galaxies with dispersions above the σ-completeness at their individual
redshifts should be included in the σ-complete sample. The bottom line from this
example is that completeness in σ depends on redshift, just as completeness in Mr

does.
To construct a σ-complete sample, I will parametrize the σ-completeness limit

of each original volume-limited sample as function of redshift, i.e. derive σlim(z).
This I will do empirically, by obtaining σlim,VL for each volume-limited subsample
and repeating the same procedure as above with 40 different such subsamples, each
a subset of my full sample at z 6 0.1. The subsamples will each have a volume with
maximum redshift increased by 4z = 0.0025, starting from z = 0, and ending at
z = 0.1. The procedure for deriving σlim is outlined below:

1. For a single volume-limited subsample, find the magnitude completeness limit,
Mr,lim, at zmax, the maximum redshift of this volume.

2. For this subsample, derive the 95th percentile of the σ distribution up to Mr,lim.
I did this by selecting the 10000 smallest3 Mr and finding the 95th percentile
score of σ in that set: σ95. This process I repeated for the next 10000 brightest
objects and so on (keeping σ95 for each bin), until Mr,lim was reached.

3Nothing special about 10000; it’s just easy to work with and a small enough number relative to
the total sample size of ∼364000.
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3. Find a linear best-fit to the distribution of σ95s, which is simply the 95th per-
centile distribution of σ for galaxies with Mr 6 Mr,lim, and obtain its intersec-
tion with Mr,lim. The intersection is σlim(zmax), the σ-complete level for this
subsample’s zmax.

4. Repeat steps 1-3 for all the volume-limited subsamples, so that σlim is found for
zmax ranging from 0.0025 to 0.1.

5. Parametrize σlim as function of z from the results of step 4.
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σlim(z): This work

σlim(z): Sohn et. al. (2017)

Figure 2.2: log σ v.s z for 40 volume-limited subsamples, each with zmax increasing
by ∆z = 0.0025. The blue diamonds indicate the σ-limit for a given redshift. The
black dot-dashed line shows the 2nd order polynomial fit (eq. (2.3)) to 0.03 6 z 6 0.1,
while the purple dot-dashed line shows a similar polynomial fit by Sohn et. al. [62]
for quiescent galaxies in the SDSS in the same redshift range. The light green points
are galaxies included in our final σ-complete sample, while red points are excluded.
The blue line is drawn to indicate my lower redshift limit.
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Figure 2.3: Two different 2nd order polynomial fits to σlim: the dashed red curve shows
the fit to all points, i.e. z 6 0.1, and the dot-dashed black curve shows the fit to the
range 0.03 6 z 6 0.1. The latter is adopted for σlim(z) (eq. (2.3)).

For step 5, I plot each of the 40 σlim values for the corresponding zmax in log σ− z
space, as shown in Fig. 2.2. σlim increases as zmax increases, due to an increase in
luminosity. This is to be expected as we require a brighter magnitude limit for com-
pleteness at a higher volume. The points in the plot are fit to a 2nd order polynomial.
Inspecting the plot, we observe that there’s a break in the nice downward curving
of σlim(z)at z 6 0.03. This can be explained by the low number of galaxies in the
volume of those subsamples.

Therefore, I fit a 2nd order polynomial to all subsamples, i.e z 6 0.1, and to
those subsamples limited to 0.03 6 z 6 0.1. Fig. 2.3 shows that the dashed red
line polynomial doesn’t do a great job at describing the z 6 0.1 range, while the
dashed black line describes the 0.03 6 z 6 0.1 range very well. Hereafter, I adopt the
polynomial fit to 0.03 6 z 6 0.1, parameterizing σlim as:

σlim(z) = 1.57 + 10.47z − 37.7z2 (2.3)

In Fig. 2.2, I compare the results of my σ-completeness analysis with those of
Sohn et. al. (2017), who use SDSS galaxies in the same volume. The primary
difference between our analyses is that they exclude all actively star-forming galaxies
in this volume. These are galaxies with a higher Dn4000 index, defined by the ratio
of flux between the 4000-4100 Å and 3850-3950 Å wavebands. This quantity is an
indicator of the age of the stellar population of a galaxy and helps to separate actively
star-forming (higher Dn4000) and quiescent (lower Dn4000) galaxies (See Ref. [63]).
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Though my process of obtaining σlim(z) is very similar to theirs, I make no such cuts
based on star formation activity, since I ultimately want to describe SMBHs in as
many nearby galaxies as possible.

Sohn et. al. also parametrizes their σ-completeness limit with a 2nd order poly-
nomial curve, which, as shown by the purple dot-dashed curve in Fig. 2.2, lies above
my own (their fit was also constrained to 0.03 6 z 6 0.1 as the z 6 0.03 behavior
deviated from the fit like ours). It makes sense that their completeness limit lies
above ours when we inspect the properties of our σ-complete samples (mine is shown
in Fig. 2.4). The distribution of σ in their σ-complete sample peaked around σ ∼ 200
km s−1, while mine peaked around σ ∼ 160 km s−1. So, larger values of σ would need
be needed to achieve completeness in the Sohn et. al. sample.

The σ-complete sample

Using eq. (2.3), I estimate σlim for redshift in my sample. The interpretation of
this value is that it’s the minimum σ at which my sample is complete for the volume
covered by this redshift. The final criterion in my sample selection therefore, is that
I’ll only include galaxies which have σ > σlim(z), with z being the redshift of the
particular galaxy in question. My final sample, which I refer to as the σ-complete
sample hereafter, includes 96842 galaxies in the redshift range 0.03 6 z 6 0.1. This
is a much larger sample size than used in most studies estimating the VDF in local
galaxies or even in deriving the BHMF. Sohn et. al.’s sample, which is one of the
largest in deriving the local VDF, had 40,660 quiescent galaxies – about a factor of
2 smaller than mine. The studies that I compare my BHMF to in chapter 3 also use
significantly smaller (sometimes by factors > 10) samples in their derivations.

Fig. 2.4 displays some properties of the sample compared to my original
magnitude-limited sample. For the σ-complete sample, the peak of the σ distri-
bution shifts significantly to the right of the peak in the magnitude-limited sample:
the mean σ changes from ∼ 79 km s−1 to ∼ 160 km s−1. Since the original sample
has many galaxies with unreliable (σ . 70 km s−1) measurements, an analysis of that
sample would produce flawed results with large systematic and random uncertainties.
The distribution of uncertainties in σ measurements, ∆σ, tells a similar story. The
significantly reduced spread in ∆σ ensures further that I minimize the proportion of
uncertain measurements in my sample, with most ∆σ values under 15 km s−1. The
mean ∆σ is reduced from ∼ 15 km s−1 to ∼ 6 km s−1 as I adopt the σ-complete
sample. There’s also a greater proportion of brighter galaxies in my final sample
compared to the original. But most importantly, now I have confidence in my sample
not being biased towards absolute magnitude, or velocity dispersion, allowing for a
neutral statistical treatment of the data. In other words, we can now assume the
sample reflects a true distribution of a galaxy population, much like having a sample
representative of different properties of a human population.
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2.1.2 Constructing the VDF

The Velocity Dispersion Function (VDF) gives a statistical distribution of the ve-
locity dispersion of a galaxy. The VDF has been an extensively studied quantity in
extragalactic astronomy, since it helps connect predicted models of galaxy formation
and evolution with observations. While the luminosity function, LF, of galaxies is
sometimes converted to a VDF via the Faber-Jackson relation, this only really applies
for elliptical galaxies and other issues, as already outlined, include the need for a spe-
cific waveband to compare between theory and observations. The VDF can also help
characterize the observable differences between star-forming and quiescent galaxies.

There are several methods for constructing a statistical distribution function like
the VDF, including the 1/Vmax method, the parametric maximum likelihood STY
method, and the non-parametric stepwise maximum likelihood (SWML) method.
These three methods are outlined quite instructively in Weigel et. al. (2016) [64],
who use it to construct a distribution function for the stellar mass of galaxies (stellar
mass function). I choose the 1/Vmax method, because of its simplicity and also because
we do not have to assume a functional form of the VDF to begin with4. The one major
disadvantage with this method is that it can be biased if there are inhomogeneities on
large scales, in the quantity studied. This will not be a problem for us, because the
volume scales we’re working with is at least in the order of gigaparsecs, much larger
than the scales on which inhomogeneities may exist.

The 1/Vmax method corrects for an effect that observational astronomers have
been familiar with for almost a century, called the Malmquist bias. As already
seen, surveys like the SDSS spectroscopic survey only select objects brighter than
a limiting apparent magnitude. Since brightness is the only screening factor, faint
objects can only be seen if they are close enough to us, while very bright objects can
be seen from very far away. This gives a false impression about the true distribution
and number of objects in the volume surveyed, as it appears to us that there are
many more luminous objects than faint ones within a certain distance from us. The
problem with this selection bias is that brighter objects contribute significantly more
to distribution functions like the VDF, or say, the average luminosity of the volume
surveyed, than they would had we been able to detect fainter objects in our sample.

The 1/Vmax method takes into account the relative contribution to the VDF of
each galaxy with dispersion σ, by volume-weighting the velocity dispersions. We
first need to divide velocity dispersions in 41 bins of ∆ log σ = 0.02, ranging from
log σ = 1.84 km s−1 to log σ = 2.64 km s−1. Then, the number density of galaxies in
a specific σ bin j is given by the following sum:

Φj(σ)∆ log σ =

Nbin∑
i

1

Vmax,i
, (2.4)

where Nbin is the number of galaxies in the bin and Vmax,i is the maximum volume
at which a galaxy i at redshift zi with velocity dispersion σi could be detected in.
Ah, the usefulness of this method becomes clearer as we see that galaxies with higher

4The method was first used by Schmidt (1968) [65].



46 Chapter 2. Analysis: Velocity dispersion and SMBH-host galaxy correlation

σ (which can be seen further out) have a larger volume over which they could be
detected. Their contribution to the VDF are thus proportionately weighted down by
this larger volume. Had it not been for this important weighting, this method would
simply involve counting the number of objects in each σ bin (which would make it a
boring and very inaccurate thing to do).

With all our terminology and assumptions (a flat universe that obeys Λ-CDM
cosmology) from section 1.1.2 in place, we define Vmax,i as:

Vmax,i =
4π

3

Ωsurvey

Ωsky

[
DC(zmax,i)

3 −DC(zmin,i)
3
]
. (2.5)

We’re taking the volume of a sphere with radius given by the comoving distance
at the maximum redshift that galaxy i could be found at, DC(zmax,i), subtracted by
the volume with radius given by the comoving distance at the minimum redshift the
galaxy could be found at, DC(zmin,i). So this is what we call a comoving volume
element of a galaxy, i.e. the 3-D slice in which it can be detected. zmin,i = 0.03 for all
galaxies, since that is the lower redshift limit of our sample. We include a scale factor,
(Ωsurvey/Ωsky), since SDSS wasn’t surveying the entire sky. Ωsky is the solid angle of
the sky and is equal to 41253 deg2. Similarly, Ωsurvey = 9200 deg2 is the solid angle
covered by the SDSS spectroscopic survey. For zmax,i, I take the maximum redshift
galaxy i could have, based on σi and the completeness limit from above (Fig. 2.2 and
eq. (2.3)).

The VDF, Φ(σ), was finally calculated from Eq. (2.4), for the range 1.84 6 log σ 6
2.64. Note that the unit of Φ(σ) is Mpc−3 dex−1, which gives a volume density per
unit magnitude, as we require. The errors on the VDF were estimated by a Monte
Carlo method. I ran 10000 simulations of the VDF calculation, each time randomly
modifying my σ values with the associated uncertainty, ∆σ, assuming a gaussian
error distribution. So a particular σ value would be perturbed normally taking ∆σ
as the standard deviation in the σ distribution. The resulting VDF, and associated
uncertainties, is shown in Fig. 2.5, and tabulated in Table 2.1.

Fig. 2.5 shows both the VDF obtained for our final sample, as well as for a sample
at 0.03 6 z 6 0.09 which is not complete in σ. The VDF for the latter is simply the
number of galaxies in each σ bin divided by the volume of the entire sample. Though
the overall shape of the VDF is similar for both samples in the 2.0 . log σ . 2.5 range,
the volume-limited VDF starts to drop at log σ < 2.05 while the σ-complete VDF
remains flat – steepens slightly even – at log σ < 2.05. This once again demonstrates
the shortcomings of a statistically incomplete sample: the volume-limited sample is
only complete for log σ > 2.2 (from eq. (2.3)), so σ is incompletely sampled as we
start to go to lower values.

The large error bars on the VDF points in Fig. 2.5 are mostly due to low number
statistics. The largest uncertainties came from bins with fewer than 50 objects. These
were the bins with & 30% uncertainty in Φ(σ) (see Table 2.1). Consequently, the VDF
is reliable for 1.86 6 log σ 6 2.5.
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log σ Φ(σ) Nbin

[km s−1] [×10−4 Mpc−3 dex−1]

1.84 63.59+143.08
−137.78 12

1.86 156.79+23.39
−23.39 181

1.88 155.26+11.61
−11.18 361

1.90 150.48+7.23
−7.23 562

1.92 122.19+5.10
−4.91 647

1.94 124.95+3.76
−3.62 897

1.96 111.88+2.88
−2.88 1049

1.98 111.15+2.31
−2.31 1300

2.00 108.20+1.85
−1.85 1583

2.02 99.22+1.54
−1.43 1807

2.04 93.16+1.27
−1.32 2049

2.06 86.45+1.01
−1.05 2313

2.08 88.06+0.87
−0.84 2821

2.10 87.82+0.73
−0.73 3376

2.12 85.14+0.59
−0.62 3865

2.14 84.27+0.52
−0.50 4575

2.16 83.62+0.43
−0.42 5392

2.18 78.81+0.38
−0.38 6082

2.20 71.63+0.29
−0.30 6662

2.22 64.42+0.26
−0.24 7184

2.24 64.50+0.24
−0.25 7193

2.26 58.06+0.25
−0.24 6477

2.28 51.06+0.25
−0.24 5694

2.30 45.91+0.26
−0.24 5121

2.32 40.89+0.25
−0.24 4561

2.34 33.80+0.26
−0.24 3769

2.36 28.37+0.26
−0.25 3164

2.38 23.10+0.26
−0.24 2576

2.40 17.66+0.25
−0.24 1967

2.42 11.53+0.25
−0.24 1285

2.44 8.44+0.26
−0.24 940

2.46 5.29+0.25
−0.24 587

2.48 3.03+0.25
−0.24 336

2.50 1.76+0.24
−0.25 194

2.52 0.77+0.25
−0.26 84

2.54 0.46+0.26
−0.25 49

2.56 0.25+0.25
−0.25 28

2.58 0.15+0.27
−0.27 15

2.60 0.12+0.27
−0.27 12

2.62 0.09+0.25
−0.25 10

2.64 0.10+0.25
−0.24 11

Table 2.1: Data points for the VDF. The second row lists the VDF, Φ(σ), and as-
sociated upper and lower limit uncertainties, for a bin of width ∆ log σ = 0.02. The
third row lists number of objects in each bin, Nbin.
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Figure 2.5: VDF for our σ-complete sample – shown by blue circles – and for a
volume-limited sample at 0.03 6 z 6 0.09 – shown by pink crosses. The vertical axis
shows magnitudes of VDF Φ(σ). The volume-limited VDF declines for log σ < 2.05.

The Schechter function and Press-Schechter theory

The luminosity, stellar mass, velocity dispersion and other distribution functions
of galaxies are often described by a Schechter function, first proposed by Paul
Schechter in 1976 [66]. In an attempt to approximate the observed luminosity func-
tion, Φ(L), of galaxies, Schechter proposed the following analytical expression:

Φ(L)dL = Φ?

(
L

L?

)α
exp

[
−L
L?

]
dL

L?
, (2.6)

where Φ?, α, and L? are all parameters determined by the data the expression
is fit to. This is essentially a gamma function, i.e. a power law combined with
an exponential function. Φ(L) is a power law at low luminosities and switches to
an exponential choke; it is truncated at higher luminosities. This change in the
slope of Φ(L) (in log Φ − logL plane) occurs at a characteristic luminosity, L?, the
corresponding luminosity function being Φ? (in units of Mpc−3 dex−1 like Φ(L)). The
dimensionless α gives the slope of the power-law portion. The observational impetus
for the widespread use of this expression to fit observed luminosity distributions is
that very few galaxies with very high intrinsic brightnesses are seen, and while the
number density of galaxies per unit magnitude is seen to decrease at a constant rate
with increasing brightness, there is ample evidence for a rapid cutoff at high enough
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luminosities.
The expression was developed from the Press-Schechter theory (1974) of self-

similar gravitational condensation, which proposed a formalism to explain the various
scales at which matter is clumped in the universe – ranging from stars (very small) to
galaxy clusters (very large) [67]. The earliest stages of the lifetime of our universe are
marked with density perturbations, or fluctuations, in both small and large scales,
and with its expansion, these perturbations grew linearly in space. After a period
of time, when these perturbations reach a certain threshold, the material within
them collapses to form structures of a comparable scale (“self-similar”). This has an
enormously significant implication in our Λ-CDM view of the universe: the formation
of structure in the universe follows a hierarchical pattern. In the distant universe,
density perturbations formed low-mass clumps which over time merge with other
clumps of similar size to form larger clumps on lager scales. These collapsed systems
are called “dark matter halos” and are responsible for matter coalescing together in
the form of stars, star clusters, galaxies and galaxy clusters. N-body simulations trace
these halos through cosmic time and determine their properties which in turn inform
us what properties are expected of galaxies as they evolve. The reader might find
instructive an extended formalism for this model, presented in Bond et. al. (1991)
[68].

Press-Schechter theory considers the different scales of density perturbations and
predicts the number of objects within a mass range [M,M+dM ]. For instance, it can
be used to obtain the mass distribution of galaxies with masses between 108 M� and
1010 M� at any given time. The simple prediction of this theory is that masses are
distributed in a power law fashion for low masses, which is followed by an exponential
cutoff of the distribution at masses above some characteristic mass. This formalism
was extended to describe galaxy luminosities, and the data fit the power law + expo-
nential falloff structure of the luminosity function very well, except at the very bright
end, where it under-predicted the number density of galaxies observed. Similarly,
recent N-body simulations show agreements with the model except underestimating
the number of very massive galaxies [69].

The point of this digression is that I want to approximate my VDF with a function
similar in form to the Schechter function. By looking at Fig. 2.5, we can already see
that the observed VDF behaves like a power law with a logarithmic slope at the faint
σ end and decreases rapidly after a certain point. This might tempt us to simply
change variables from the L − σ4 relation and simply rewrite eq. (2.6) in terms of
σ; for example the exponential part would become exp[−(σ/σ?)

4] and we’d expect to
see a sharper cutoff at the high σ end. But L− σ4 is poorly defined for non-elliptical
galaxies and as already noted in 2.1.1, there can be significant scatter in σ at a fixed
L. Even if we were to take the mean σ at a fixed L, it wouldn’t scale linearly in L.
So if Φ(L) is well fit by a Schechter function, we should not use the same functional
form to fit Φ(σ).

Rather, I use a Schechter-like function, with the same power-law behavior, followed
by an exponential cutoff at a characteristic σ, to parametrize the VDF. Following the
functional form of the BHMF from Graham et. al. (2007) [70] and Aller & Richstone
(2002) [71], I introduce two different Schechter-like functions. The first one has 3 free
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parameters, α, Φ?, and σ?:

Φ(σ) dσ = Φ?

(
σ

σ?

)α+1

exp

[
−σ
σ?

]
dσ. (2.7)

The slope of the power law has been adjusted to α+1, where α = −1 corresponds
to a flat distribution at σ < σ?. The characteristic truncation value of σ is σ?, where
Φ(σ?) = Φ?. The second Schechter-like function I use has an additional β parameter
like the original function:

Φ(σ) dσ = Φ?

(
σ

σ?

)α+1

exp

[
1−

(
−σ
σ?

)β]
dσ. (2.8)

Number of (free) α β log Φ? log σ?

parameters [Mpc−3 dex−1] [km s−1]

3 0.95± 0.09 − −1.42± 0.14 1.5± 0.48
4 −1.90± 0.17 7.82± 0.45 −2.80± 0.31 2.45± 0.18

Table 2.2: Best-fit parameters for eq. (2.7) – top row – and (2.8) – bottom row.

Table 2.2 lists the best-fit parameters to equations (2.7) and (2.8). The uncer-
tainties on the parameters were derived by using the same Monte-Carlo simulations
by which uncertainties on the VDF were found (again, assuming a gaussian error
distribution). From Fig. 2.7, it is clear that the 4-parameter function, i.e. eq. (2.8),
is a better functional fit to the observed VDF. The fit to the 3-parameter function is
highly uncertain, as seen by the large shaded region. Plus, the exponential cut-off is
at a very low σ (σ ∼ 31 kms), so it’s not describing our observed distribution well.
The 4-parameter function, however, gives a more reliable fit for 1.86 6 log σ 6 2.5 –
the high uncertainties for log σ > 2.5 probably result in higher than actual number
densities at that range. I also note that this function isn’t a perfect description of
the data at all ranges, since it slightly overestimates the VDF at 2.32 . log σ . 2.46.

Comparison of my observed VDF with past works yields reasonable agreement.
Shown in Fig. 2.6 are the VDFs derived from SDSS velocity dispersions by Sheth et.
al. (2003) [72], Bernardi et. al. (2010) [73], and Sohn et. al. (2017). Sheth et. al.
only examined early-type galaxies, so it’s natural that their VDF lies below ours for
the most part. However, the Sheth et. al. VDF also declines rapidly for log σ . 2.2,
because their sample only used about 9000 galaxies from the available SDSS data at
the time, and because it was not complete in σ. In contrast, both Bernardi et. al.
and Sohn et. al. considered early and late-type galaxies. The former, however, used
a magnitude-limited sample instead of one that was complete in σ.

While the Sohn et. al. sample was complete in σ, it only contained quiescent
galaxies, as mentioned above, so it was a subset of my sample. The large number
of galaxies with log σ . 2 helped characterize my low σ end, thereby making our
VDF rise slightly at the low σ end, rather than fall or flatten. This is most likely
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Figure 2.6: Comparison of the VDF from this work (observed VDF in blue, 4-
parameter Schechter-like function fit in black curve) with that of Sohn et. al. (2017)
(orange triangles), Bernardi et. al. (2010) (magenta dashed line), and Sheth et. al.
(2003) (light blue dot-dashed line). The grey shaded region indicates ±1σ uncertainty
in the fit to our observed VDF.

due to star-forming galaxies in my sample, whose VDF has been noted to be much
steeper than quiescent galaxies at the low and medium σ range for all redshifts [74].
My analysis also reaffirms the accepted notion and the findings of these works that
galaxies with σ & 350 km s−1 are extremely rare, since just over a hundred such
galaxies were found. I will use the parametrized form of our VDF (eq. (2.8)) to
estimate the BHMF, assuming a log-normal distribution around the MBH-σ relation,
in the next chapter.
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Figure 2.7: Schechter-like fits to the observed VDF (blue points): Red dashed line is
eq. (2.7) and black line is eq. (2.8), with parameters listed in Table 2.2. The pink and
grey shaded regions indicate the ±1σ uncertainty of the 3 and 4 parameter function
fits, respectively.

2.2 Correlations: Using MBH-σ to estimate masses
As discussed in the last chapter, tight correlations between measured black hole

masses and their host galaxies’ σ can help us estimate MBH for a much larger sample
of galaxies for which we don’t have MBH data. With the assumption that all the
galaxies in my final sample from SDSS host a SMBH at their center, I can estimate
the mass of the central black hole for each galaxy from the M-sigma relation. The
most recent estimate of MBH-σ has increased the sample size of SMBHs for which we
have MBH by almost two times the previous largest compilation. This is outlined in
Van Den Bosch (2016), who compiled 230 MBH values from the literature [32].

All of these measurements are in galaxies that are very close to us and include
early-type, late-type, and even dwarf galaxies. 206 measurements use dynamical
tracers: stellar kinematics, gas kinematics, and masers, in galaxies near enough that
their sphere of influence (section 1.2) can be resolved. The remaining 24 are from
reverberation mapping from temporally resolved galaxies: MBH is obtained using
time delays in the broad line region of these nearby AGNs. Log-linear regressions
between MBH and σ were fitted via the mlinmixerr and linmixerr algorithms [75].
The resulting correlation between logMBH and log σ was found to be:

log

(
MBH

M�

)
= (8.32± 0.04) + (5.35± 0.23) log

(
σ

200 km s−1

)
. (2.9)

The black hole mass, MBH , is in units of M� and the host galaxy’s velocity
dispersion, σ, is in km s−1. The result of this fit is shown in Fig. 2.8, which uses
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different symbols to indicate the different MBH measurement methods. Upper limits
shown in the figure are not used in the fit. This relation, especially its slope > 5 is
similar to most recent works, especially that of McConell & Ma (2013) [31], whose
sample was the basis of this sample. The scatter around log MBH , ε, is 0.49 ± 0.03,
which is almost half an order of magnitude, as opposed to ε ∼ 0.3− 0.4 in most other
studies ofMBH-σ. Van Den Bosch attributes this larger-than-usual scatter inMBH-σ
primarily to the large sample size including many more low-mass (∼ 106 M�) SMBHs,
but also to artificial exclusion of outliers in previous studies and to the fitting routine
he used which is known to produce a larger scatter with respect to other routines.

Figure 2.8: The black hole mass-velocity dispersion (MBH-σ) relation from Van den
Bosch (2016). This solid line shows the MBH-σ relation from eq. (2.9), from 230
galaxies. Upper limits of MBH are shown as open triangles – these are not included
in the fit. Different colors denote different types of MBH measurements. Error bars
are only shown for the objects with the largest uncertainties. The grey dashed and
dotted lines denote 1 and 3 times the intrinsic scatter (ε = 0.49± 0.03), respectively.

The largest issue with taking this correlation at face value is the heterogeneity of
the sample: not only do MBH measurement methods vary, so do the definitions of
σ used in different samples. Different σ measurements in this sample use different
instruments and methods. However, the fact of these inhomogeneities is not enough
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to offset the black hole fundamental plane (BHFP) we observe. According to
the Virial Theorem, all gravitational systems sit on a 3-D plane of given by:

GM1/2 = R1/2σ
2
1/2, (2.10)

where M1/2 is half the mass of these systems, R1/2 is half their size, and σ1/2

half of the second moment of the velocity tensor of those systems. None of these
quantities are measurable directly, so we adopt in their place the luminosity, L, the
half-light radius, Re, and σ, respectively. As it’s been shown over and over again here,
various empirical relationships have emerged out of studying galaxies for quite a long
time. The Faber-Jackson relation relates L to σ, the Tully-Fisher relation relates L to
angular velocity, VC , the Kormendy relation (1977) relates L and Re. These relations
are interpreted to be projections of the 3-D plane, which we call a fundamental plane.

SMBHs and their host galaxies, being gravitational systems, may also have a
fundamental plane relating the observables, L, Re, and σ. In particular, we expect
SMBHs and the spheroids wherein they lie to obey a fundamental plane. This is
because, inside the half-light radius (which is a subset of the spheroid’s size), the
gravitating mass consists almost entirely of stars, dark matter and the central BH,
meaning that properties like the velocity dispersion of stars should be strongly linked
with the spheroid’s mass and size. Indeed, this is what Van den Bosch observes for his
sample: L, Re, and σ all lie on a fundamental plane given by the form σ ∝ LαkR

β
e (eq.

(1) in Van den Bosch (2016); Lk is the K-band luminosity and α and β empirically
determined coefficients). The scatter in the relation is a mere 0.07± 0.01, which led
Van den Bosch to conclude that the if heterogeneity of σ in his sample gave rise to
significant errors, they would not lie on such a tight fundamental plane.

He extends this argument to unify this galactic fundamental plane (GFP) to black
hole masses. A correlation was observed between MBH (these are the measured
masses, independent of the MBH-σ relation) and L and Re of the form MBH ∝ LαkR

β
e

with a scatter a little over half a dex. By combing this with the GFP, Van den Bosch
finds MBH∝ σ5.3, which is consistent with eq. (2.9). Thus, a BHFP is observed
for this sample, again implying possibly some physical mechanism(s) resulting in the
coevolution of SMBHs and their host galaxies. The GFP and BHFP are shown in
Figs. 2.9a and 2.9b, respectively.

As of this writing, this work is the first in which the Van den Bosch MBH-σ re-
lation is applied to a construction of the local BHMF. The large sample size and
establishment of a GFP and BHFP of the whole sample will help produce a statis-
tically significant description of the accretion history and distribution of masses in
SMBHs. I use eq.(2.9) on all 96842 galaxies in my sample to estimate the mass of
their central SMBHs. The resulting MBH is shown in a histogram in Fig. 2.9. The
median value ofMBH in this sample is log

(
MBH

M�

)
= 7.93. The lower bound is seen to

be a million solar masses, or log
(
MBH

M�

)
= 6, while very few galaxies are predicted to

host SMBHs with logMBH & 9.5 M�, meaning it will be difficult to characterize this
very high mass end of the observed BHMF. In the next chapter, I will use these MBH

values in concert with a 1/Vmax method like with the VDF to construct the BHMF. I



2.2. Correlations: Using MBH-σ to estimate masses 55

(a) The galactic fundamental plane (GFP), of
velocity dispersion, σ, K-band luminosity, L,
and half-light radius, Re, of host galaxies of the
SMBHs studied in Van den Bosch (2016). The
scatter around log σ is 0.07± 0.01.

(b) The black hole fundamental plane (BHFP)
of SMBH mass, MBH , and host galaxy’s K −
band luminosity, L, half-light radius, Re, from
Van den Bosch (2016). The scatter around log
MBH is 0.57± 0.04.

will also convolve the VDF obtained in the previous section with the MBH-σ relation
to obtain another measure of the BHMF.
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Figure 2.9: Histogram of MBH values for the final sample, obtained by converting σ
to MBH using eq. (2.9).





Chapter 3

Mass function from observations

3.1 The Black Hole Mass Function (BHMF)
Now that I have described the velocity dispersion, σ, of galaxies in my sample

and a correlation linking σ to the mass of a galaxy’s central black hole, MBH , the
stage is set for us to derive the BHMF. The Black Hole Mass Function (BHMF) is
the number density of supermassive black holes of a given mass per unit logarithmic
mass, given by:

Φ(MBH) d logMBH =
N(MBH) d logMBH

V (MBH)
, (3.1)

where N(MBH) is the number of SMBHs with mass MBH and V (MBH) is the
volume sampled at mass MBH . There are two methods primarily used to derive the
BHMF. The first relies on a 1/Vmax approach as we used in deriving the VDF above,
i.e. we count the number of SMBHs in equal mass bins, after correcting for the
Malmquist bias. I call this the direct method. The second method, which I call the
VDF method, uses the parametrized form of the VDF and convolves it with the
MBH-σ relation – assuming a log-normal distribution ofMBH – to generate a BHMF.
Note that both of these uses the MBH-σ relation from Van den Bosch (2016).

3.1.1 The direct (1/Vmax) method

Much like we did with the VDF in 2.1.2, the 1/Vmax method estimates the relative
contribution of each SMBH with massMBH to the BHMF, by weighing the individual
masses. The procedure I follow is similar to that of Graham et. al. (2007) [70]
and Vika et. al. (2009) [76]. Using eq. (2.9), I first convert σ of all the galaxies
in my sample to a central black hole mass, MBH (assuming of course, that each
of these galaxies host a SMBH). Then I divide up MBH into 20 equal bins of size
d logMBH = 0.2, starting from log

(
MBH

M�

)
= 6, and ending at log

(
MBH

M�

)
= 10. So

we’re probing the mass range of 1 million to 10 billion M�. As Fig. 2.9 showed
already, very few SMBHs are predicted to have logMBH & 9.5 M�, and none have
logMBH < 6 M�.
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Similar to eqn. (2.4), then, the BHMF is computed by:

Φj(MBH)∆ logMBH =

Nbin∑
i

1

Vmax,i
, (3.2)

where now Vmax,i is the maximum volume at which a SMBH i at redshift zi with
mass MBH could be detected in. Again, I sum over all Nbin galaxies in the j bin.

Of course, there are a number of sources of uncertainty associated with this pro-
cess. In fact, three primary sources of uncertainty need to be accounted for:

i) The uncertainty in the coefficients in eq. (2.9), i.e. the gradient and y-intercept
of the MBH-σ relation.

ii) The uncertainty in the measurement of σ, ∆σ.

iii) The scatter in the MBH-σ relation: ε = 0.49± 0.03.

I quantify the impact of these on the derived BHMF by using a Monte Carlo
method to model the uncertainties. The uncertainties are perturbed individually and
collectively and their impact on the resulting BHMF is estimated. In other words, I
repeat the following steps 10000 times in deriving uncertainties:

1. Randomly modify the coefficients of eq. (2.9) by the corresponding uncertainties
in both, assuming a gaussian error distribution for both.

2. Randomly modify σ by the corresponding uncertainty, ∆σ, again assuming a
gaussian error distribution in σ. This, in conjunction with the modified coef-
ficients from step 1, is used to calculate MBH from (a modified version of) eq.
(2.9).

3. PerturbMBH from step 2 by the scatter in eq. (2.9), ε. This assumes – surprise,
surprise – a gaussian error distribution in log MBH .

The resulting BHMF and associated uncertanties are shown in Fig. 3.1 and listed
in Table 3.1. Like the VDF, the BHMF was described well by a 4-parameter Schechter-
like function. The best-fit Schechter function parametrizing the BHMF is given by:

Φ(MBH) d logMBH = Φ?

(
MBH

M?

)α+1

exp

[
1−

(
MBH

M?

)β]
d logMBH . (3.3)

Here, M? is the characteristic truncation mass – the point at which the function
transitions from a power law to an exponential fall-off – and Φ? = Φ(M?). Again, α
and β are dimensionless parameters. The best-fit parameters of this function to my
data were: α = −1.15 ± 0.08, β = 0.90 ± 0.17, M? = (6.41 ± 0.18) × 108 M�, and
Φ? = (3.25 ± 0.09) × 10−4 Mpc−3 dex−1. Using the errors as the ±1σ uncertainties
for each parameter and assuming a gaussian error distribution in each, I repeated
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Figure 3.1: The BHMF derived from the 1/Vmax method. The observed BHMF points
are the pink diamonds, while the best-fit Schechter-like function parametrizing the
data (eq. (3.3)) is the dashed dark blue line. The grey shaded region indicates the
±1σ uncertainty of the fit.

the Schechter fit 10000 times. The Schechter fit and the resulting 68% confidence
interval of the fit are shown as the dark blue dashed line and the grey shaded region,
respectively. The Schechter function reasonably describes the data in the range 6 6

log
(
MBH

M�

)
6 9.6.

The observed MBH distribution and its Schechter-like characterization implies
that the local universe is much more numerously populated with low to medium mass
SMBHs – those in the range 6 6 log

(
MBH

M�

)
6 8 – than high mass (log

(
MBH

M�

)
& 9)

SMBHs. With increasing MBH , we observe a decreasing number density, but up to
MBH= (6.41 ± 0.18) × 108 M�, this decline is slow, whereas Φ(MBH) falls rapidly
after that. It is difficult to accurately characterize the high mass end because of the
low number of objects with log

(
MBH

M�

)
& 9.5.

3.1.2 The VDF method

This method is used more widely in deriving a BHMF, whether via the MBH-
σ relation, or by another scaling relation between black hole mass and a galaxy
property. The idea here is to convert the VDF, Φ(σ), to a BHMF, Φ(MBH), using
the MBH-σ relation as a bridge between MBH and σ. First, we assume a log-normal
distribution for a given MBH . This is justified by looking at Fig. 2.9 and noting
that the distribution of predicted MBHs can be described by a gaussian, or normal,
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log MBH Φ(MBH) Nbin

[M�] [×10−4 Mpc−3 dex−1]

6.0 23.90+23.83
−10.91 609

6.2 22.38+10.83
−3.45 1194

6.4 19.44+7.06
−2.25 1823

6.6 18.61+5.15
−1.59 2651

6.8 17.11+4.77
−2.13 3492

7.0 15.51+3.88
−1.96 4571

7.2 15.00+1.95
−0.63 6219

7.4 14.99+0.39
−1.28 8490

7.6 13.84+2.24
−2.84 11027

7.8 11.71+2.96
−3.40 13063

8.0 11.46+2.75
−3.27 12789

8.2 9.23+1.10
−1.71 10292

8.4 7.26+0.19
−0.82 8098

8.6 5.19+0.56
−0.05 5784

8.8 3.28+1.08
−0.54 3660

9.0 1.65+1.44
−0.98 1840

9.2 0.70+1.34
−0.98 780

9.4 0.21+1.05
−0.78 235

9.6 0.07+0.65
−0.47 73

9.8 0.03+0.39
−0.27 28

Table 3.1: The BHMF, derived directly from the 1/Vmax method. The uncertainties
are obtained from Monte Carlo simulations, as described in the text. The third
column lists the number of objects in each bin.

distribution in logarithmic masses, log MBH . The probability of finding MBH in the
range [logMBH , logMBH+d logMBH ] for a given log σ is P (logMBH | log σ) d logMBH .
This is given by:

P (logMBH | log σ) d logMBH =
1√

2πε2MBH

exp

[
−1

2

(
logMBH − [a+ b log σ]

εMBH

)2
]

d logMBH (3.4)

where a and b are the coefficients in the MBH-σ relation, and εMBH
its verti-

cal scatter. Thus, the number of galaxies with SMBH mass MBH in the range
[logMBH , logMBH + d logMBH ] is found by convolving P with the VDF, Φ(σ):
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Φ(MBH) d logMBH =
1√

2πε2MBH

∫ ∞

0

Φ(σ) exp

[
−1

2

(
logMBH − [a+ b log σ]

εMBH

)2
]

d log σ d logMBH (3.5)

I use the 4-parameter Schechter function parametrization of the VDF (eq. (2.8))
as Φ(σ). The VDF-derived BHMF is shown in comparison to the directly derived
VDF in Fig. 3.2a. The errors were propagated from the Schechter fit to the observed
VDF.

The shapes of both mass functions are very similar, with both showing slow de-
crease in SMBH number density at low and medium masses, followed by rapid fall-off
at higher masses. The differences between the two results can be attributed to how
the Schechter function in 2.1.2 fit the observed VDF. The change in behavior from
power law to exponential function happens at a higher MBH for the VDF BHMF,
but it also has a slightly higher slope of the exponential decline. It estimates a higher
number of black holes in the mass range 8 . log

(
MBH

M�

)
. 9.5, corresponding to the

region in which the Schechter-like fit to the VDF overestimates the observed VDF.
Statistically speaking, there are no major differences between the two methods, since
they both weigh out the contribution of every object to the BHMF in the same
volume-dependent way. In fact, it’s probably a misnomer calling one of them the
1/Vmax method when really they’re both derived from the 1/Vmax technique.

The BHMF can also be expressed as a mass density of SMBHs of a given mass
per unit magnitude, which has units of M� Mpc−3 dex−1. The comparison of the
two mass density BHMFs are shown in Fig. 3.2b. The shapes of the two functions
are similar again, showing that mass density increases from the low mass regime to
the high mass, followed by a steep decline at the highest masses (log

(
MBH

M�

)
> 9.2).

The 1/Vmax-derived BHMF peaks at a lower mass and descends less sharply than the
VDF-derived BHMF. The latter also predicts ∼twice the mass density in the range
9 . log

(
MBH

M�

)
. 9.3; the larger peak of the blue curve is most likely a consequence

of the Schechter function not fitting the observed VDF well in all ranges. These
differences are significant enough that they may contribute to producing biased or
inaccurate results in further analysis. Therefore, hereafter I mainly consider the
BHMF derived directly from the 1/Vmax method.

3.2 SMBH mass density
It is now time to estimate the local SMBH mass density, ρBH , the total mass

of SMBHs per unit volume in the local universe. This is obtained by integrat-
ing the product of the BHMF and MBH over the entire mass range probed by the
parametrized BHMF, Φ(MBH):
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ρBH =

∫ log(MBH/M�)=9.6

log(MBH/M�)=6

Φ(MBH)MBH d logMBH

=
Φ?eM?

β ln 10

[
γ

(
α + 2

β
,

(
109.6M�
M?

)β)
− γ

(
α + 2

β
,

(
106M�
M?

)β)] (3.6)

where γ(a, x) =
∫ x

0
ta−1e−t dt is the lower incomplete gamma function of a and x.

The derivation is worked out in full in Appendix A.
I perform 10000 Monte Carlo realizations of this calculation, by varying the best-

fit parameters of eq. (3.3) by their ±1σ uncertainties assuming gaussian distributions.
The resulting histogram of ρBH values are shown in Fig. 3.3. I take the median of
this distribution to be the best value of the local mass density ρBH , and I take the
+1σ uncertainty as the difference between the 84th percentile and mean value, and
the −1σ uncertainty as the difference between the mean and the 16th percentile value.
I find that ρBH =

(
2.71+0.55

−0.43

)
× 105 M� Mpc−3 for SMBHs of masses between 106 and

109.6 M�. This is in agreement with previous determinations, as we’ll see soon.
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Figure 3.3: Values of the local mass density of SMBHs for 10000 different solutions
to eq. (3.6), each time varying the best-fit parameters of eq. (3.3) assuming their
errors are normally distributed. The bins are each of width 0.2× 104 M� Mpc−3.

3.3 Soltan’s Argument revisited: The local and in-
tegrated mass density

Andrzej Soltan, like quite a few astronomers of his time, believed that quasars
were powered by mass accretion on to SMBHs. His simple method of using observed
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quasar counts to characterize the mass accretion history of SMBHs up to the present
day has withstood the test of time [77]. The average radiative efficiency, ε, of a SMBH
tells us what fraction of the mass accreted onto it is converted to luminous energy1:

ε =
Lbol

Ṁaccc2
. (3.7)

Ṁacc is the rate at which mass accretes on to a black hole, so Ṁaccc
2 is what

you’d get if all the mass accreted on to it was converted to energy. Lbol is the (total)
bolometric luminosity produced by the black hole (this is in units of power, so ε works
out to be dimensionless). However, not all of the accreting mass will be eaten up by
the black hole. The actual rate at which mass accretes on to a SMBH, or the SMBH
growth rate, is given by:

ṀBH = (1− ε)Ṁaccc
2, (3.8)

the factor of (1 − ε) accounting for the mass radiated away during the accretion
process. Soltan integrated the observed quasar count, the number density of quasars
of luminosity L at redshift z, i.e. Φ(L, z), over all L and z. This gives us the integrated
mass density accreted by SMBHs:

ρBH,int =
1− ε
εc2

∫ zmax

0

∫ Lmax

Lmin

L
′

bolΦ(L′, z)
dt

dz
dL′ dz, (3.9)

So, if we know ε – or more practically, assume a fixed value of ε – the energy
radiated from the observed AGN population gives us the the integrated mass density
of SMBHs in those systems. If this value happens to be similar to the local SMBH
mass density which we obtain from observations of nearby galaxies, then we can safely
claim that the primary mode of SMBH growth is mass accretion during AGN phases.
If we set these two cumulative mass densities to be equal: ρBH,int = ρBH , then it sets
a constraint on ε, an average radiative efficiency of SMBHs throughout cosmic time.

In 1982, our instruments were far more limited than they are now, so we couldn’t
observe many of the dimmer quasars we can today. Thus, Soltan’s estimate of the
accreted mass density of quasars was only a lower limit. By assuming ε = 0.1, he
concluded that at least & 8 × 104 M� of quasar mass was accumulated in every
Mpc−3 of the universe. Over the past two decades, this estimate has been improved
significantly, with ρBH,int always found to be of the order of 105 M� Mpc−3. For
example, Shankar et. al. (2009) found that the local mass density derived from
various scaling relations such as MBH-n and MBH-Lsph yield an average radiative
efficiency, ε ∼ 0.065− 0.07 in order to match local mass density to the integrated one
[79]. They also showed that ε & 0.15 would require local mass densities to be about
two times lower than they are observed to be.

This match of the local and integrated mass densities suggests that accretion of
baryonic matter accounts for virtually all of the growth of SMBHs across cosmic time.
This warrants the assumption that accretion of dark matter isn’t a significant aspect

1The maximum radiative efficiency is only around 30%, or ε ∼ 0.3. See Thorne (1974) [78].
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of SMBH growth, as accepted by many authors, including Shankar et. al. (2004)
[80] and Graham et. al. (2007). This assumption would also be consistent with a
number of physical mechanisms that link stellar, so baryonic, properties of a galaxy
to its central black hole, signaling that galaxies and their SMBHs coevolve.

By this working assumption, I can estimate the fraction of baryonic matter of
the universe inside SMBHs. The fraction of the entire mass-energy budget of the
universe that are baryons is given by Ωbaryon = (0.0222 ± 0.007): this is the ratio of

the density of baryons to the critical density of the universe,
ρbaryon

ρcritical
[81]. Given the

critical density of the universe, ρcritical = 1.36× M� Mpc−3 (Graham et. al. 2007),
we can find the fraction of the universe’s mass-energy budget that is just SMBHs,
ΩBH :

ΩBH =
ρBH
ρcritical

. (3.10)

The fraction of baryons in the universe that is locked up inside SMBHs is then

simply
ΩBH

Ωbaryon

. I find that (0.009± 0.002)% of baryonic matter is inside a SMBH, so

about 1 part in 10000. For comparison, Graham et. al. found (0.0024± 0.01)% and
Vika et. al. found (0.0027± 0.0007)%.

3.4 Past works and constraints on SMBH growth
and evolution

Despite the flexibility of our [theoretical] framework, no one model provides
a good fit to all the data we consider.

- F. Shankar (2013)

Several authors and groups have derived the local SMBH mass function using a
variety of techniques. While theMBH-σ relation has been a popular choice for scaling
relation, many have also opted for MBH-Lsph, MBH-Mspheroid, and other observed
correlations to relate MBH to the host galaxy. The general approach is the same as
outlined in this thesis, but far more have chosen to convolve a scaling relationship
with the observed distribution of a galaxy property than to directly measure the
BHMF by volume-weighting. A comparison of my (direct) BHMF with some others
in the literature for which the data was available for plotting is shown in Fig. 3.4.

Notably, all the observed BHMFs show a similar distribution of black hole masses,
especially in the shape of the curve. The Graham et. al. BHMF was derived from a
log-quadratic relation between MBH and n, the Sérsic index of 1769 galaxies in the
Millennium Galaxy Catalogue (MGC) at 0.013 < z < 0.18. Vika et. al. used the
MBH-Lsph relation from the same survey, with a sample of 1743 galaxies in the same
volume. Both these studies are severely constrained by low-number statistics and
systematic uncertainties in the BHMF derivation procedure. In particular, Graham



66 Chapter 3. Mass function from observations

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
logMBH [M�]

−7

−6

−5

−4

−3

−2

lo
g

Φ
(M

B
H

)
[M

p
c
−

3
d

e
x
−

1
]

Shankar et. al. (2009): model
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Shankar et. al. (2004): observed

Graham et. al. (2007): observed

Schechter fit to BHMF: this work

BHMF: this work

Figure 3.4: Comparisons between BHMF from this work and others. The green dotted
line shows the BHMF produced by a model that assumes a mean radiative efficiency,
ε = 0.065. The blue dot-dashed, orange dashed, and purple dashed curves are all
observed BHMFs obtained by a similar procedure to mine. Note that the Shankar et.
al. (2004) BHMF was derived only for early type galaxies.

et. al. found quite significant scatter in their MBH-n correlation, and Vika et. al.
made some underlying assumptions about the difference between light contained in
an elliptical spheroid and a spiral bulge. The latter adopted a constant ratio of
light contained in the spheroid to the total light, B/T , which has been observed to
introduce significant systematic uncertainties in the BHMF (see also Li et. al. (2011)
[82]).

On the other hand, the Shankar et. al. (2004) determination shown in Fig. 3.4
only considers early-type galaxies. The BHMF shown also used a luminosity function,
but only from SDSS early-type galaxies. Though they showed that early-type galaxies
contribute about 3 times as much to the local mass density, ρBH , as late-types, the
plot also illustrates that a significant fraction of the number density is missed if late-
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type galaxies are not considered in a derivation of the local BHMF.
The green dotted line in Fig. 3.4 shows the results of a theoretical model proposed

by Shankar et. al. (2009). They predicted that the mass function, Φ(MBH), evolves
self-consistently, with a mean accretion rate, ṀBH , and an average radiative efficiency,
ε, as above. The plot shows the resulting BHMF from the model with ε = 0.065.
While the shape faithfully reproduces our observed BHMF, the model over-predicts
the number of SMBHs with masses 6 < log

(
MBH

M�

)
< 8.

Perhaps the most significant difference between mine and other observed BHMFs
is the high mass range, where my BHMF predicts more black holes of over a billion
M� (log

(
MBH

M�

)
> 9). While it is possible that this represents an actual distribution

of high-mass black holes in the current universe, it is more likely that this difference
is caused by my sample selection. I refer the reader back to 2.1.1, especially Fig.
2.1b, where I show the log σ −Mr distribution for a volume-limited sample. Though
I remarked that very few galaxies fainter than Mr,lim should have σ above σlim, a not-
negligible portion of my σ-complete sample might comprise of such galaxies, which
weren’t excluded because of the empirically determined σ-completeness limit. These
objects would slip through the cracks of my volume-weighting scheme, since being
fainter, they could be overweighed by volume and that could lead to overestimating
their contribution to the BHMF.

Low-luminosity and high-σ objects are quite rare too, because a high σ begets
the need for a lot of mass (remember σ probes the gravitational potential well of the
entire galaxy). High masses are only achievable with high luminosities. A possible
physical interpretation for these objects is that they’re galaxies undergoing a merger
process, so that multiple SMBHs could be involved in the system. A merging galaxy
is incompatible with our entire methodology so far, not only because I’ve assumed
a single central SMBH at the center of each galaxy, but also because mergers as a
mode of growth was neglected from the beginning. The results below also support a
scenario where SMBHs grow almost entirely via accretion.

I compare my estimated value of ρBH with those from the literature – the com-
pilation is shown in Table 3.2. My estimate of ρBH =

(
2.71+0.55

−0.43

)
× 105 M� Mpc−3

agrees well with all, albeit is slightly higher (except the Salucci et. al. determination,
which was one of the first estimates of ρBH by using the BHMF). It also agrees with
Shankar et. al’s (2009) range of ρBH ∼ (1.5−2.7)×105 M� Mpc−3. My results agree
especially well with Fukugita & Peebles (2004), who use the MBH-Lsph and MBH-σ
relations to calculate the contribution of SMBHs to the cosmic energy inventory to
find ρBH =

(
2.50+1.86

−0.93

)
× 105 M� Mpc−3 [86].

Lastly, I compare my local mass density with the integrated mass density in the
literature to test our theory of SMBH growth via AGN accretion and find what
constraints my data sets on the average radiative efficiency of SMBHs. Hopkins et.
al. (2007) uses the bolometric quasar luminosity function (QLF) at z = 0 − 6 by
combining observations of over 50000 objects in the optical, mid-infrared and X-
ray [87]. Their comprehensive study yields an integrated mass density at z = 0,
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of ρBH,int =
(
2.36+0.61

−0.49

)(0.1

ε

)
× 105 M� Mpc−3. Demanding this match my local

ρBH , the average radiative efficiency required is ε = 0.0868. Marconi et. al. (2004)

determine ρBH,int = 2.2

(
1− ε

9ε

)
× 105 M� Mpc−3, using the AGN LF from Ueda et.

al. (2003) [88]. The radiative efficiency to match my ρBH is ε = 0.0827 in this case.
Similarly, a comparison with the accreted mass density in Shankar et. al. (2004)
yields ε ∼ 0.0778.

As already mentioned, the Shankar et. al. (2009) model with ε = 0.065 over-
predicts the BHMF compared to our observed distribution, requiring a slightly higher
ε to match the local and accreted mass densities (since higher ε translates to less
mass accreted). An updated model from Shankar et. al. (2013) resulted in ε ∼
0.07 matching the observed local BHMF for a number of studies [89]. My results
require slightly higher values of radiative efficiency (meaning gas is radiated away
more efficiently), but agrees with the notion of an average radiative efficiency of
ε ∼ 0.1 that most authors set or find. Overall, my results support the currently-
accepted picture that SMBHs grow primarily via mass accretion during active phases
and that the universe is far more heavily populated by SMBHs of small to medium
size (∼ 106 − 108 M�) than very large ones (& 109 M�). Furthermore, SMBHs build
up their masses from small to large black holes, with the mass distribution dropping
with increasing mass.

Various semi-empirical, semi-analytical (sometimes more of one than the other)
models are being developed to explain the phenomena of SMBH growth, mass accre-
tion, and their coevolution with host galaxies. As our instrumental limitations are
overcome, our observational capabilities improve significantly, allowing us to probe
far deeper into the universe and into the mystery shrouding SMBHs. With that, the
constraints in evolutionary processes governing SMBHs are set more tightly. Conse-
quently, our theoretical modeling in recent years has been able to better account for
observations in the local and distant universe.

We assumed quite a few things on our way, not the least of which is a single
average rate at which all massive black holes radiate energy, regardless of mass. While
quite a few authors have assumed that scaling relations like the MBH-σ don’t evolve
with time, more complex models are attempting to incorporate their possible time-
evolution. As I mentioned, we didn’t even consider galactic mergers, which would
complicate our picture of a self-consistent evolution in the BHMF significantly (though
we have a somewhat reasonable backing that mergers shouldn’t play too big a role
in growing SMBHs to their present size2). Many of the issues surrounding SMBH
demography and models of SMBH growth and AGN feedback are summarized in
Kelly & Merloni (2012) [90] and Shankar (2013) [91].

2See Shankar (2013) for an overview of more complex models that incorporate mergers into SMBH
growth.





Conclusion

Supermassive black holes are fascinating objects with complex physical mecha-
nisms governing their growth and even more mysterious processes linking them to
the galaxies in which they live. Despite studying galaxies and SMBHs in quite some
detail for the last year, I found that there is much more information to be extracted
from these two fundamental constructs of our world than we’ve even learned to grasp.

In this thesis, I investigated black hole demographics from a statistical point-
of-view, by characterizing the SMBH mass distribution. The first step in deriving
the BHMF was to tackle selection biases – of which I now know there are many in
astronomy – by selecting a sample mostly (∼ 95%) complete in σ. This does quite
a good job in eliminating many of the biases that might have been present in our
sample from the Sloan Digital Sky Survey. I measured the VDF for ∼ 96000 galaxies
from z = 0.03 to z = 0.1 using a volume-weighting method that weighed out the
notorious Malmquist Bias.

The VDF for my sample showed a gradual decrease in the number density of
galaxies with increasing σ, before a characteristic σ?, where the number density plum-
mets rapidly. The selection of a statistically complete sample and the inclusion of all
galaxy morphological and star-forming types observed helped me characterize the low
σ (log σ . 2 km s−1) end of the distribution well, although significant uncertainties
exist for larger σ (log σ & 2.5 km s−1). A parametrized form of the distribution in
Φ(σ), with a power law and exponential fall-off, could be fit to the observed distribu-
tion, much like it’s been seen with other galaxy distributions, such as Φ(L). However,
the fit is unable to describe the observed VDF at all ranges. Then I used observations
of SMBHs very near us, and obtained the MBH-σ relation from the largest available
sample to us. The strong correlation between MBH and these galaxies’ velocity dis-
persions, along with the existence of a galactic and black hole fundamental plane,
indicates some physical mechanism tying the growth of SMBHs to that of galaxies.

Finally, the BHMF was generated, both by directly applying the 1/Vmax method
of counting galaxies and by combining the VDF parameterization with the MBH-σ
relation from Van den Bosch (2016). Though both methods produced similar shapes
and overall results to the BHMF, the direct method gives more secure outcomes, since
the uncertainty in the VDF fit is carried over to the BHMF, possibly over-predicting
the true number of black holes with medium to high masses (8 . log(MBH/M�) .
9.5). The Schechter function did a better job in describing the BHMF in all ranges
than the VDF, however low-number statistics contributed to uncertain fit to the data
at very high masses (log(MBH/M�) & 9.5). I observed a larger number density
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of SMBHs, relative to many other works, at masses log(MBH/M�) & 9, which I
speculate to be an effect of faint, yet high σ galaxies, possibly undergoing mergers,
which could introduce an additional bias in my sample.

I computed the mass density accreted by SMBHs of masses 6 6 log(MBH/M�) 6
9.6 to the present day and found ρBH =

(
2.71+0.55

−0.43

)
×105 M�Mpc−3, which agrees with

most previous estimates. I also estimated the fraction of the baryonic mass-energy
budget of the universe consumed by SMBHs, and found a slightly larger fraction
than previously estimated. Furthermore, my results validated the picture where mass
accretion during the active phases of a SMBH is the most important mode of SMBH
growth, by matching the integrated mass density from observations of distant AGNs
with the locally observed mass density. The matches required that SMBHs radiate
away, on average, in the range of ∼ 7.5− 9% of the mass that they accrete (generally
agreeing with the widely speculated value of 10%).

The buildup of SMBH mass over cosmic time may, however, have far more com-
plicated moving parts than I’ve been able to model with the machinery in this thesis.
The field of SMBH research is exciting and extremely relevant. There are many dif-
ferent directions this line of study can take, not the least of which is fully describing
the distribution of MBH for a higher range of masses, as our instrumental capabilities
increase, and we have better information to better understand especially the very
high mass end of the distribution. Statistical approaches can be extremely useful in
inferring the properties and distribution of objects in our universe and help us formu-
late a clearer picture of how the world we know today evolved, where we came from,
and where we’re fated to go next in our adventure through space and time.

I set the lower MBH limit to 106 M�. Is there an upper limit to how big a
black hole can get? [92] While the mathematical formulation of my results support a
model where matter grew hierarchically, there is much that can be done via empirical
work, or cosmological simulations, to explain if SMBH evolution also follows a similar
pattern, i.e. do the smallest black holes form first, followed by the larger ones?
Estimating the BHMF at higher redshifts is also very helpful in understanding their
coevolution with galaxies, especially if the redshift-dependence of the scaling relations
can be assessed well...do the sameMBH-σ-like correlations exist earlier in time? Black
hole mergers, once not very well understood, can be studied in great detail now due
to the titanic advances of LIGO’s gravitational wave detection technology. Gravity
waves are probably the hottest topic in astronomy right now, and it’s ushered in an
unprecedented era of globally collaborative multi-messenger astronomy. After much
anticipation, the James Webb Space Telescope (JWST) is scheduled to go up next
year, ushering in a second wave of HST-like space-based observations into the hearts
of galaxies near and far.

Astronomy has always felt like a very pure journey into my own self-discovery.
All you need is a curiosity of what’s out there and how we ended up in this tiny blue
rock circling an average-sized star in a tiny island universe among so many others.
Truly, there is something poetic and sensational about massive, violent objects like
SMBHs being intrinsically tied to our own cosmic story. As Einstein once said, “God
does not play dice with the universe.” Maybe He plays poker face, and it’s up to us
to decipher what it means.



Appendix A

The SMBH mass density integral

Eq. (3.6), which lets us compute ρBH , the SMBH mass density, is given in full as:

ρBH =

∫
log(MBH/M�)=9.6

log(MBH/M�)=6

Φ?

(
MBH

M?

)α+1

exp

[
1−

(
MBH

M?

)β]
MBH d logMBH .

(A.1)
To deal with this, we’ll first turn the d logMBH into a dMBH , by noting that

d logMBH

dMBH

=
1

MBH ln 10
. The MBHs cancel out and the integral turns into:

ρBH =
1

ln 10

∫
109.6

106

Φ?

(
MBH

M?

)α+1

exp

[
1−

(
MBH

M?

)β]
dMBH . (A.2)

Now, let M =
MBH

M?

, so that dM =
dMBH

M?

. Then the limits also change from 106

and 109.6 to
106

M?

and
109.6

M?

and we get:

ρBH =
Φ?eM?

ln 10

∫ 109.6/M?

106/M?

M
α+1

exp
(
−Mβ

)
dM, (A.3)

where I factored out Φ?,M? and exp(1). Now, we let t = M
β and dt = βM

β−1
dM .

This changes our limits to: tup =

(
109.6

M?

)β

and tdown =

(
106

M?

)β

. Our integral can

now be expressed with respect to t:

ρBH =
Φ?eM?

β ln 10

∫
tup

tdown

(t1/β)α+1

(t1/β)β−1
e−t dt. (A.4)

The point of this change of variables is that we can get ρBH in the following form:
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ρBH =
Φ?eM?

β ln 10

∫
tup

tdown

t(
α+2
β

)−1e−t dt. (A.5)

This integral has the form of the lower incomplete gamma function1:

γ(a, x) =

∫ x

0

ta−1e−t dt. (A.6)

The last thing we have to do to arrive at our answer in eq. (3.6) is turn the lower
limit of our integral into 0, so we divide it up into two integrals:

ρBH =
Φ?eM?

β ln 10

∫
tup

tdown

t(
α+2
β

)−1e−t dt.

=
Φ?eM?

β ln 10

∫ tup

0

t(
α+2
β

)−1e−t dt−

∫
tdown

0

t(
α+2
β

)−1e−t dt

 (A.7)

So that finally:

ρBH =
Φ?eM?

β ln 10

[
γ

(
α + 2

β
,

(
109.6M�
M?

)β)
− γ

(
α + 2

β
,

(
106M�
M?

)β)]
. (A.8)

1See, for example, Press et. al. (1992) [93] for more uses of this
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