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• a constant optical depth, τλ = χ̄λ 〈L〉, across the beam cross section (so
that the absorption is independent of the point of origin of a beam element
emitted from the source)

• atomic absoption cross sections that depend only upon the atomic physics,
i.e., are independent of the local physical environment [under certain con-
ditions α(λ) can be modified, such as in the presence of magnetic fields or
high gas pressure]

• an isothermal absorbing gas cloud, so that the total absorption cross sec-
tion, σ(λ), is independent of line of sight location through the cloud [al-
lowing σ(λ) to be factored out of optical depth integral (Eq. 5.30)]

As each of these assumptions is relaxed, either the solution to the radiative
transfer and/or the expression for the optical depth become progressively more
complex. Eq. 5.31 is employed for most all applications in the astronomical
literature.

In practice, greater complexity is applied when the structure of a global
absorbing phenomenon is being studied or the kinematics of such a structure
is being studied. Examples of applications for which the models of the radia-
tive transfer and/or optical depth are more complex include intergalactic gas
structures undergoing cosmological expansion (e.g., Gunn & Peterson, 1965),
rotating galactic halos with density gradients (e.g., Weisheit, 1978), infalling
clouds into galactic halos and rotating galaxy disk kinematics (e.g., Lanzetta
& Bowen, 1992) and outflowing winds associated with the background source
itself (e.g., Vilkovoiskij & Irwin, 2001).

The reader is also refered to the books on stellar atmospheres by Mihalas
(1978) and by Gray (1992). These authors, especially Mihalas, develop formal-
ism of the optical depth for absorption models that incorporate systematic gas
dynamics.

5.6 Spectrophotometry and Magnitudes

In certain applications, it may be of interest to measure the observed flux, Fλ,
summed over a desired wavelength range. This converts the energy collected
per unit area per unit time per unit wavelength to energy collected per unit
area per unit time. The flux per unit wavelength, Fλ is sometimes referred to
as the flux density, whereas the quantity F (λ) = λFλ is referred to as the flux
(in this text, this distinction of nomenclature is applied only when the context
of discussion requires it; the subscript always implies flux density). The flux
density over a selected wavelength range is written

Fλ =

∫ λ+

λ−

Fλ dλ, (5.32)

where λ− and λ+ are the lower and upper limits of the wavelength range.
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88 CHAPTER 5. ASTRONOMICAL SPECTRA

Alternatively, the flux density and flux can be measured or converted to
frequency units, where F (ν) = νFν , where the frequency flux density, Fν , has
units of [erg s−1 cm−2 Hz−1]. The relationship between Fν and Fλ derive from
energy conservation and the relationship c = νλ. We have

Fλdλ = Fνdν, Fλ =
c

λ2
Fν . (5.33)

In the application of Eq. 5.33, to preserve units between Fλ and Fν , the factor
dν/dλ = c/λ2 is computed in “mixed” units. Writing dν/dλ = (c/λ)/λ, we
compute c/λ in cgs units with the final λ in [angströms].

In imaging, it is common that the observed flux is measured using a fixed
filtered band pass. It is also common practice that the filter is a member of
a predetermined suite of filters comprising a photometric system (see below).
These photometric systems are calibrated using the magnitude system. Mag-
nitudes are unitless numbers on an inverted logarithmic scale that are based
upon flux ratios. The zero points are defined by the fluxes of standard objects
accounting for the filter band–pass response of the filters.

In cases where spectroscopic data are in hand but the magnitude of the
source is desired in a certain band pass, one can perform spectrophotometry. If
the response function of the filter with band pass y is Ry(λ) over the wavelength
range λy− to λy+ , then the measured band pass flux (modulated by the filter
band pass) is

Fy =

∫ λy+

λy−

Ry(λ)Fλ dλ . (5.34)

The response functions are the probability of transmission at each wavelength
and obey

∫ λy+

λy−

Ry(λ) dλ = 1, (5.35)

where the integration is take over a broad enough wavelength range such that
the filter response vanishes, i.e., Ry(λ) = 0 for λ = λy− and λ = λy+ .

5.6.1 Apparent magnitude

The flux density measured on the magnitude scale is defined by

mλ = −2.5 logFλ mν = −2.5 logFν (5.36)

As such, magnitudes provide an alternative scale with which flux densities can
be quoted. It is not uncommon to see the flux densities of stars and other
sources presented in mλ or mν .

The band–pass apparent magnitude is defined using the ratio of the band–
pass flux (Eq, 5.34) of the object to that of a standard source. In a band pass
y,

my = −2.5 log

{

Fy

F s
y

}

(5.37)
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5.6. SPECTROPHOTOMETRY AND MAGNITUDES 89

where Fy is the band pass y flux of the object and F s
y is band pass y flux of the

standard source. Note that if the object band pass flux equals the source band
pass flux, i.e., Fy = F s

y , then my = 0. Thus, the standard source provides the
zero point of the apparent magnitude scale. Also, note that my decreases as
the ratio Fy/F s

y increases. Objects with Fy > F s
y have my < 0 and those with

Fy > F s
y have my > 0.

Flux ratios

Apparent magnitudes provide a simple relationship in which the ratio of the
band pass fluxes of two distinct objects can be determined by the difference of
their apparent magnitudes. Through the definition of magnitudes (Eq. 5.37),
we have

m(1)
y − m(2)

y = −2.5 log

{

F (1)
y

F s
y

}

+ 2.5 log

{

F (2)
y

F s
y

}

= −2.5 log

{

F (1)
y

F (2)
y

}

, (5.38)

which can be inverted to obtain,

F (1)
y

F (2)
y

= 10−0.4[m(1)
y −m(2)

y ]. (5.39)

Note that every integer difference in the magnitudes of two objects corresponds
to a factor of 10−0.4 = 2.5 in their flux ratios. The term “dex” is often used; it
is shorthand for “decade” on the logarithmic scale. For instance, the flux ratio
of ±2.5 corresponds to ∓0.4 [dex] on the magnitude scale.

5.6.2 Photometric systems

There are two main photometric systems employed in the astronomical sciences,
the Vega system and the AB system. There are a plethora of filter suites, in-
cluding the Johnson–Cousins, Washington, Gunn, Sloan Digital Sky Survey,
Hipparcos–Tycho, and Hubble Space Telescope WFPC–2 and 3, and ACIS sets.
For a general review see Bessell (2005). For brevity, we employ the Johnson–
Cousin UBV RI system for purposes of illustration. The UV BRI filter response
functions (renormalized to a peak transmission of unity) are illustrated in Fig-
ure 5.7. For example, the y = V (“visual” band) filter has an effective central
wavelength of 5500 Å with a band pass ranging from 4700–7400 Å.

Vega system

The Vega system is calibrated using the flux density of the A0 V star Vega
(or sometimes the mean of a sample of unreddenned A0 V Pop I stars). The
flux density of Vega (Oke, 1990)1 is presented in Figure 5.7 as the thin solid

1The electronic data were obtained from the on–line archive of optical and UV spec-
trophotmetric flux standard stars made available by the European Southern Observatory.
(http://www.eso.org/sci/observing/tools/standards/spectra/)
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90 CHAPTER 5. ASTRONOMICAL SPECTRA

curve (with absorption features). Because A0 V stars do not have a flat flux

density, the calibration band pass flux, F (Vega)
y is different for each band pass. For

additional information see Oke & Gunn (1983); Bessell (1990). For information
on the Sloan filter suite and calibration, see Smith et al. (2002).
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Figure 5.7: (a ) The flux densities, Fλ, of Vega (thin solid curve) and the hypothetical
AB source (dashed curve). (b ) The flux densities, Fν , of Vega (thin solid curve) and the
hypothetical AB source (dashed curve). Superimposed are the Johnson–Cousins UBV RI filter
response curves normalized to unity at their peak transmissions. The differences between the
calibration magnitude of Vega and that of the AB magnitude are listed in Table 5.1.

AB system

For AB magnitudes, there is no physical standard source, but simply a definition

of a hypothetical source with F (AB)
ν = 3.63 × 10−20 [erg s−1 cm−2 Hz−1] for all

ν (a flat frequency flux density distribution). This is not a flat flux density in

wavelength, F (AB)
λ = 0.1092/λ2 [erg s−1 cm−2 Å−1] (where λ is [angströms]).

The AB flux density is presented in Figure 5.7 as the thin dashed curve.
Because Fν is a constant, and the filter responses have unity normalization

(Eq. 5.35), we have F (AB)
y = F (AB)

ν , yielding −2.5 log{3.63×10−20} = 48.60.
Thus, from the definition of apparent magnitude (Eq. 5.37),

my(AB) = −2.5 logFy − 48.60 = −2.5 logFν − 48.60 = mν − 48.60 (5.40)

for all band passes, where mν is the magnitude of the flux density as defined
in Eq. 5.36. Note that Eq. 5.40 (and the constant −48.60) applies only if the
band pass flux is determined using frequency units. As such, AB magnitudes in
frequncy units are equivalent to the flux density magnitude, mν , scaled to the
hypothetical AB source.

c© Chris Churchill (cwc@nmsu.edu) Use by permission only; Draft Version – February 15, 2010



5.6. SPECTROPHOTOMETRY AND MAGNITUDES 91

Contrasting systems

In Figure 5.7a, the standard Vega and AB flux density distributions, F (Vega)
λ

and F (AB)
λ , are shown. In Figure 5.7b, F (Vega)

ν and F (AB)
λ are shown. The

Johnson–Cousins UV BRI band pass response curves2 are superimposed (thick
solid curves). Vega is shown as the thin solid curve (which exhibits aborption
features), and the AB source is shown as the smooth dashed curve. The defini-
tion of the AB standard “source” flux density was chosen to give mV (AB) = mV ,
or more precisely

∫ 7400

4700
RV (λ)F (Vega)

λ dλ =

∫ 7400

4700
RV (λ)F (AB)

λ dλ , (5.41)

(or the equivalent integrals over frequency). However, the latest calibration of
Vega yields a difference of 0.044 magnitudes. Note that the flux density curves
are normalized (by definition for AB magnitudes) near the center of the response
curve for the V filter.

In Table 5.1, the central (effective) wavelength, λy , and the band pass width,
∆λy/λy, are listed for the Johnson–Cousins UBV RI filter suite. Also listed are

the values of F (Vega)
ν [erg s−1 cm−2 Hz−1] at νy and F (Vega)

λ [erg s−1 cm−2 Å−1] at
λy. The values of the latter can be visually confirmed by inspection of Figure 5.7.
The last column lists the magnitude difference between the Johnson–Cousins
Vega system and the Johnson–Cousins AB system, my −my(AB) = ∆my , i.e.,
the quantity added to the Johnson magnitude in band pass y to obtain the AB
magnitude in that band pass.

Table 5.1: Vega and AB Magnitude Data

Band pass λy ∆λy/λy F (Vega)
ν F (Vega)

λ ∆my

(y) [Å] [10−20] [10−9]

U 3600 0.15 1.81 3.18 · · ·
B 4400 0.22 4.26 6.60 −0.163
V 5500 0.16 3.64 3.61 −0.044
R 6400 0.23 3.08 2.26 +0.055
I 7900 0.19 2.55 1.23 +0.309

In imaging studies, one measures Fy directly. In spectroscopic studies, Fy

must be computed using Eq. 5.34 from the measured Fλ or Fν . In practice,
imaging studies are almost always more accurate because accurately measuring
the flux spectroscopically is complicated by additional wavelength effects. In
particular, one must be sure that all the light from the object passes through

2Electronic data from ftp://ftp.noao.edu/kpno/filters/4Inch List.html .
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92 CHAPTER 5. ASTRONOMICAL SPECTRA

the slit (if the slit is narrower than the seeing disk of the object, then some light
will be lost at the slit).

5.6.3 Absolute magnitude and luminosity

The absolute magnitude in band pass y, My, is defined as the apparent mag-
nitude that an observer would measure at a distance of D = 10 [pc] from the
source. Whereas apparent magnitude differences relate band pass flux ratios,
absolute magnitude differences relate band pass luminosity ratios. Thus, in a
sense, My is a surrogate for band–pass luminosity through the normalization of
the band–pass flux to a standardized distance. To account for the finite band
pass, the luminosity density, Lλ, is employed,

L(λ) = λLλ, (5.42)

where L(λ) is in [units erg s−1], and Lλ is in units [erg s−1 Å−1]. The coversion
from Lλ to Lν follows the relations for the flux density as given in Eq. 5.33.
The integrated luminosity density in the band pass is

Ly =

∫ λy+

λy−

Ry(λ)Lλ dλ . (5.43)

The relationship between the flux density and the luminosity density is

Fλ =
Lλ

4πD2
. (5.44)

From Eqs. 5.34, 5.37 and 5.44, the apparent magnitude of an object observed
in band pass y can be written in terms of luminosity

my = −2.5 log

{

∫ λy+

λy−

Ry(λ)
Lλ

4πD2
dλ

}

+ 2.5 logF s
y . (5.45)

By definition, the absolute magnitude is obtained by setting D = 10 [pc],

My = −2.5 log

{

∫ λy+

λy−

Ry(λ)
Lλ

4π(10 pc)2
dλ

}

+ 2.5 logF s
y , (5.46)

The difference of the above two equations, my − My, is called the distance
modulus, denoted DM,

DM = 5 log

{

D

10 pc

}

= 5 log D − 5, (5.47)

where the distance to the object, D, is expressed in [parsecs]. Thus, if the appar-
ent magnitude and distance to an object is measured, the absolute magnitude
can be computed from

My = my − DM, (5.48)
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Often, for a population of object (such as galaxies, etc.), there is a measured
characteristic absolute magnitude, M∗

y , for the band pass, which, according
to Eq. 5.46, corresponds to a characterstic luminosity for the band pass, L∗

y.
This characteristic luminosity might be, for example, the average band pass
luminosity for a population of object. Through the definition of magnitudes
(Eqs. 5.37 and 5.46), and applying steps analagous to those obtained to derive
Eq. 5.38, we have

My − M∗
y = −2.5 log

{

Ly

L∗
y

}

, (5.49)

which can be inverted to obtain the ratio of the luminosity of the object to the
characteristic luminosity of the population,

Ly

L∗
y

= 10−0.4[My−M∗

y ]. (5.50)

5.6.4 Cosmological Sources

The above treatment of the apparent and absolute magnitudes presupposes that
the source object is in the same cosmological reference frame as the observer.
Cosmological objects can have substantially redshifted spectral energy distribu-
tions, such that the flux density observed in band pass y at the observer does not
correspond to the same band pass in the frame of the source. The cosmological
effects altering the observed flux density of a redshifted source are discussed
in Chapter 14. These effects require that a corrective term be applied to the
band pass flux integrals in order to deduce the apparent and absolute magni-
tude in the rest frame of the object. These corrections, called K–corrections,
are discussed in § 14.7.

5.7 Atmospheric attenuated flux

The quantity Fλ is the observed flux incident upon the upper atmosphere of
Earth. Before this flux is recorded for subsequent analysis, the beam first suf-
fers wavelength dependent attenuation while passing through the atmosphere.
We quantify the atmospheric transmission at wavelength λ as εA

λ, which equals
the ratio of the flux entering the telescope to the observed flux entering the
upper atmosphere, Fλ. The form of εA

λ can be complex and include atmospheric
absorption lines and bands, which are commonly known as telluric features.
Furthermore, the magnitude of εA

λ is proportional to the path length through
the atmosphere.

Defining atmospheric attenuated flux as FA
λ ,

εA
λ =

FA
λ

Fλ
= exp{−τA

λ } , (5.51)

where τA
λ is the optical depth of the atmosphere. The optical depth increases

with the zenith angle, denoted z, which is the angle of the line of sight to the
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source measured from the local zenith of the telescope. For a constant density
plane parallel model of the atmosphere,

τA
λ (z) = τA

λ (0) sec z, (5.52)

where τA
λ (0) is the atmospheric optical depth at the zenith (z = 0). A commonly

used term to quantify the attentuation through the atmosphere is the “airmass”,
defined as the ratio of the optical depth toward the zenith to the optical depth
at zenith angle z,

airmass =
τA
λ (z)

τA
λ (0)

= sec z. (5.53)

Note that the sec z dependence applies only under the assumption of a constant
density plane parallel atmosphere; it applies well for small z. Higher accuracy
approximations can be found in Kasten & Young (1989). Technically, airmass
of unity is defined at sea level, but it is common that this normalization is not
included in the definition so that airmass is measured with respect to the local
elevation of the telescope facility. Thus, the zenith sightline is referred to as
“unit airmass”. In the most general form, we have

εA
λ(z) = exp{−τA

λ (z)} . (5.54)

Thus, the flux entering the telescope at angle z from the zenith, which we
call the “attenuated flux”, is then given by

F̃A
λ = εA

λ(z)Fλ = εA
λ(z)

R2

D2
Fλ exp {−τλ} = F̃A0

λ exp {−τλ} , (5.55)

where τλ is the optical depth of an absorption feature in the observed flux spec-
trum and the “attenuated continuum flux” (the attenuated flux in the absence
of an intervening absorbing cloud (τλ = 0) is

F̃A0
λ = εA

λ(z)
R2

D2
Fλ = εA

λ(z)
R2

D2
π Iλ. (5.56)

As we will discuss in detail in Chapter 6, further modification to the final
recorded flux occurs as the light interacts with the optical elements of the tele-
scope and the spectrograph before the light beam impinges upon the recording
apparatus, i.e., the detector. Fortunately, all these attenuations and modifica-
tions are multiplicative, so that one can recover the observed flux, Fλ, via a
process known as flux calibration (see Chapter 7).
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