
7.5. FLUX CALIBRATION 141

where λair is the air wavelength for an environment of 15◦ C at atmospheric
pressure. Further discussion on air to vacuum conversions for astronomical
spectroscopic applications have been reviewed in Murphy et al. (2001).

7.4.2 Heliocentric correction

The heliocentric correction is quite easily made from the formula

λh =
(

1 +
vh

c

)

λvac, (7.26)

where vh is the telescope line of sight velocity in the direction of the source
in the heliocentric reference frame (accounting for Earth’s orbital velocity and
rotation velocity at the time the source spectrum is obtained). The calculation
requires the altitude, longitude, and latitude of the observatory, the observation
date and time, the sky coordinates of the source, and a model of the ephemerae
of the solar system (especially the Earth and moon). The computation of vh is
quite involved and beyond the scope of this discussion. For further details, see
Stumpff (1977, 1980).

7.5 Flux calibration

Flux calibration is the process of determining the observed continuum flux, F 0
λ

from the measured continuum counts, Ic
λ, which are related via Eq. 6.70,

Ic
λ = εQE

λ Bλ εO
λ εG
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λ εA
λ F 0

λ
λ

hc
(AT∆t) , (7.27)

where the various attenuation efficiencies are summarized in § 6.13. Writing
(see Eq. 6.71)

ε(λ) = εQE

λ εO
λ εG

λ εC
λ εS

λ εT
λ , (7.28)

which we call the telescope throughput, and writing

Sλ = Bλ ε(λ) εA
λ(z)

λ

hc
(AT∆t) , (7.29)

we have a shortend notation of Eq. 7.27,

Ic
λ = SλF 0

λ , (7.30)

where Sλ [counts Å cm2 sec erg−1] is known as the sensitivity function. Note
that the azimuth angle, z, has been explicitly included in the atmospheric atten-
uation efficiency appearing in Eq. 7.29 in order to emphasize that the sensitivity
function is airmass dependent.

As can be seen from the terms appearing in Eq. 7.29, the sensitivity function
depends upon several particulars of the observatory and its location, including
the telescope throughput, airmass dependent atmospheric attenuation, and col-
lecting area of the telescope. The spectrograph design is also important, in that
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Figure 7.4: (a) The oberved flux, Fλ, of the star Feige 110. (b) The total throughput,
ε(λ) εAλ , based upon the hypothetical telescope and optical spectrograph throughput shown in
Figure 6.12a and the atmospheric throughput curve presented in Figure 6.12b for unit aimass.
(c) The sensitivty curve, Sλ, for a DT = 10 [meter] diameter telescope for a ∆t = 10 [sec]
exposure for Bλ = 0.1 Å pixels. (d). The observed counts, Iλ per pixel.

the wavelength interval per pixel, Bλ = ∆λpix, is a factor. From the stand point
of the observation itself, the exposure time is an additional factor.

In Figure 7.4, the relationship between the observed flux, total throughput,
sensitivity function, and observed counts is illustrated for a hypothetical tele-
scope/spectrograph facility. For this illustration, we have assumed a telescope
diameter of DT = 10 [meter], an exposure time of ∆t = 10 [sec], and a spec-
trograph with a pixel sampling rate of Bλ = 0.1 [Å pixel−1]. The observed
flux of the star Feige 110 (Oke, 1990)3 is presented in Figure 7.4a. The total
throughput, plotted in Figure 7.4b, is the product of the telescope through-
put and atmospheric attenuation (for unit airmass) shown in Figures 6.12a and
6.12b, respectively.

The sensitivity function, Sλ, for the assumed observational particulars, is
given in Figure 7.4c. The total observed counts per pixel, given by Eq. 7.30, is
shown in in Figure 7.4d. Note how the drastic reduction in throughput below

3The electronic data were obtained from the on–line archive of optical and UV spec-
trophotmetric flux standard stars made available by the European Southern Observatory.
(http://www.eso.org/sci/observing/tools/standards/spectra/)
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4000 Å for this example results in negligible counts even though in this wave-
length regime the observed flux is 1.5–2 orders of magnitude higher than where
the total throughput is at its highest, roughly 10%.

Note that Sλ scales linearly with Bλ AT∆t, so that the counts per pixel
are also in direct proportion (an order magnitude change in any one of these
quanties results in a 1 dex shift of the function illustrated in Figure 7.4c). Often,
the sensitivity function is expressed in magnitude units, m(Sλ) = −2.5 logSλ,
which is on the order of −32 to −41 for our example function. If the source flux
density is coverted to magnitude units, m(F 0

λ), then the counts in magnitude
units is simpy m(Ic

λ) = m(Sλ) + m(F 0
λ), from which it follows,

Ic
λ = 10−0.4m(Ic

λ) = 10−0.4[m(Sλ)+m(F 0
λ)] . (7.31)

Note that the above magnitudes are of the flux density. Fror AB mangitudes, the
frequency fux density is utilized, m(AB) = −2.5 log(Fν) − 48.59 (see Eq. 5.40).
Note that the sensitivity function would also need to be converted to or measured
in frequency units, i.e., Sν , before being converted to AB magnitudes.

In practice, flux calibrating a source is a set of procedures undertaken
in order to accurately determine the sensitivity function for the particular
telescope/spectrograph facility and observational conditions, following which
Eq. 7.30 or Eq. 7.31 is applied to compute the observed continuum flux. The
sensitivity function is determined by observing so–called flux standard objects,
usually bright stars. Flux standard stars are observed under ideal conditions for
telescope/spectragraphs for which the sensitivity functions are well calibrated.
Public lists of these stars and their spectral flux densities are often made avail-
able by the observatory (there are countless papers of published flux standard
stars, but a few good resources include Massey et al., 1988; Oke, 1990; Turnshek
et al., 1990; Bohlin et al., 2001, and references therein).

Flux calibration require photometric conditions, i.e., no added atmospheric
optical depth due to clouds, dust, etc., under excellent seeing conditions. The
steps for flux calibration consist of: (1) observing flux standards stars at similar
airmass to the program objects (the idea is to have εA

λ(z) be as identical as
possible for the standard stars and program objects; (2) reducing the standard
stars and program objects in identical fashion; (3) taking the ratio of observed
counts to the published observed flux of the standard stars and computing the
sensitivity function (often this result is heavily smoothed); and (4) applying
Eq. 7.30 to the program objects.

Since the quantities BλAT are fixed for the observations of both standard
stars and program objects, and because the exposure time, ∆t, can be properly
scaled for the program objects, it is only in the cases where the total throughput,
ε(λ)εA

λ(z), is identical for both the standard stars and program objects that the
flux calibration can be accurate. One of the major concern is that light loss (the
factor εS

λ appearing in ε(λ)), can be variable from observation to observation if
the telescope pointing and tracking is not ideal.

If the science objectives are simply to measure the properties of absorption
lines, then flux calibration is not required because absorption is quantified rel-
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ative to the continuum; the flux calibration divides out. However, if properties
of the source spectrum itself are part of the science goals, then flux calibration
may be necessary.

Flux calibration with echelle spectra is more challenging than calibration of
lower dispersion spectra. Due to the echelle format and the free spectral range
of the different orders of the grating, there can be duplicate coverage of the bluer
wavelength regions. Since these dupilications are from different orders off the
grating, they have separate blaze functions (Eq. 6.14). For a given duplicated
wavelength on orders n and n+1, the value efficiencies, εG

λ, may differ by a factor
of a few so that flux calibration may yield unmatching flux values without careful
treatment (e.g. Suzuki et al., 2003)

7.6 Continuum fitting

Virtually all measurements of absorption features will involve the ratio Iλ/Ic
λ.

Thus, for the analysis of absorption lines, the continuum level, Ic
λ, must be

estimated for wavelength regions spanning absorption features.
The estimation of the continumm is functional model, usually a smooth

curve fit through the data employing an objective statistical treatment (such as
least squares fitting, see § 3.5). Often, the smooth curve is a polynomial or a
series of splined polynomials and is known as the “continuum fit” or the “fitted
continum”. We will denote the fitted continuum values by Īc

λ.
It is important to realize that a continuum fit (which may have Īc

λ either
slightly systematically larger or smaller than the actual Ic

λ) introduces system-
atic errors in the measured quantities. Uncertainty in Īc

λ, denoted σĪc
λ
, should be

properly accounted for the uncertainty estimates of quantified absorption prop-
erties. Whereas the uncertainty in the counts, σIλ , are independent quantities
for each wavelength, the uncertainties in the fitted continumm must acount for
that fact that they depend upon the Iλ over a range of wavelengths. Thus,
the uncertanties in Īc

λ are dependent upon the Iλ and σIλ used to model the
continuum.

7.6.1 Using orthogonal functions

Sembach & Savage (1992) showed that using normalized orthogonal (orthonor-
mal) functions for continuum modeling provide an ideal approach to minimizing
the σĪλ

. Here, we review their approach to continuum fitting, which is most
appropriate for wavelength regions of the spectrum where the counts are not
varying rapidly or for small regions where scientific analysis is to be performed.

In general, orthonormal functions are defined by the result of their inner
product

∫ b

a
Pj(x)Pk(x) dx =

{

0 : j "= k
1 : j = k.

(7.32)

where a and b are the lower and upper limits of the interval over which or-
thogonality holds, and j and k are the orders of the functions. For purposes
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