
Chapter 12

Atomic cross sections

The probability that an absorber (atom of a given species in a given excitation
state and ionziation level) will interact with an incident photon of wavelength
λ is quantified by the absorption cross section. Similarly, for scattering, the
probability of interaction is quantified by the scattering cross section. Generally,
cross sections are written σ. For atomic absorption and scattering, cross sections
are often written α(λ), where the explicit wavelength dependence is included.
The cross section is not the probability of interaction; but the probability of
interaction is proportional to the cross section. The cross section is the effective
“area of interaction” per absorber at wavelength λ.

For a given absorber, the cross section can vary by orders of magnitude as a
function of wavelength, or radiative energy. In the case of bound–bound transi-
tions, the cross section has a narrow and large amplitude peak with wavelength.
In the case of bound–free transitions, the cross sections exhibit ionization edges,
where the absorbers are effectively invisible for photon energies below the ion-
ization potential of the absorber.

Though the cross section is unrelated to physical size of an absorber, given
that that the Bohr radius of hydrogen is ! 5.3 × 10−9 [cm], the physical cross
section of hydrogen is ! 3 × 10−17 [cm2].

12.1 The classical oscillator

To compute the power removed from a beam by a classical oscillator, we first
consider power radiated from an accelerating free electron. This power is the
radially directed radiative flux generated by the accelerating charge e of mass
me integrated over all solid angles. We will then equate the power radiated to
the power removed from the incidient beam.
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246 CHAPTER 12. ATOMIC CROSS SECTIONS

12.1.1 Accelerating electron

Consider an electron undergoing acceleration at the origin of a spherical coordi-
nate system, i.e., x = (r, φ, θ), and that the acceleration is parallel to the polar
axis (the k̂ direction). The instantaneous electric and magnetic field vectors a
distance r from the electron are

Eλ(x; t) =
e

c2

ẍ(t)

r
sin θ Θ̂

Bλ(x; t) =
e

c2

ẍ(t)

r
sin θ Φ̂,

(12.1)

where the polar angle θ is the angle between the radial vector r̂ = r r̂ and
the acceleration vector, ẍ(t) = ẍ(t) k̂. The instantaneous flux at x from the
accelerating charge is given by the Poynting vector,

Sλ(x; t) =
c

4π
[Eλ(x; t) × Bλ(x; t)] =

e2

4πc3

ẍ2(t)

r2
sin2 θ r̂. (12.2)

and the macroscopic radially directed flux at location x is the time average of
the Poynting vector

Fλ(x; t) = 〈S(x; t)〉 =
e2

4πc3

sin2 θ

r2

〈

ẍ2(t)
〉

r̂. (12.3)

If the acceleration is cyclic, then the computation of the time average is straight
forward, as will be described below in § 12.1.2 for a harmonic oscillator.

To obtain the cycle averaged instantaneous monochromatic power radiated
over all solid angles (the total power), we employ Eq. ??

Pλ(t) =

∮

r
Fλ(x; t) · dA =

∮

r
〈Sλ(x; t)〉 · dA (12.4)

where dA = r2 sin θ dθ dφ r̂. We have

Pλ(t) =
e2

4πc3

〈

ẍ2(t)
〉

∫ 2π

0

∫ π

0
sin3 θ dθ dφ, (12.5)

Using the substitution µ = cos θ, so that sin2 θ = 1 − µ2 and dµ = − sin θ dθ,
the integral evaluates to 8π/3, yielding

Pλ(t) =
2e2

3c3

〈

ẍ2(t)
〉

. (12.6)

Thus, the total radiative power, i.e., the radially directed radiative flux passing
through a surface subtending all 4π steradians of solid angle, generated by an
accelerating electron is proportional to the time average of the square of the
acceleration. What is required to compute the radiative power is a solution to
the equation of motion for the electron.
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12.1.2 Simple oscillator

Harmonic oscillation of an electron, a natural result of oscillating electric and
magnetic fields (at least in the case of forced oscillations), results in acceleration,
ẍ(t), proportional and opposite to the instantaneous displacement, i.e., −kx(t),
where k is a constant of proportionality which can be interpreted as the force
acting on the electron per unit displacement. Consider a harmonically oscillating
electron with zero net forces acting upon it, i.e., a simple harmonic oscillator.
Balancing forces, the equation of motion for harmonic oscillation of an electron
is

ẍ(t) + ω2
0x(t) = 0, (12.7)

where ω2
0 = k/me is the eigenfrequency. Assuming x(t) = exp{λt}, we obtain

the characteristic polynomial λ2 + ω2
0 = 0, from which λ = ±iω0; there are two

general solutions and they are complex conjugates of one another. Employing
the superposition principle1,

x(t) = C̃ exp {iω0t} + C̃∗ exp {−iω0} , (12.8)

where C̃ = A + iB is complex and C̃∗ = A − iB is the complex conjugate of
C̃, where A is the real part of C̃ and B is the imaginary part. Employing the
general identities2

exp {±iω0} = cosω0t ± i sinω0t (12.9)

we rewrite the solution as x(t) = 2A cosω0t, where 2A is the amplitude, which
depends upon the intial conditions. If the electron is at maximum displacement,
2A = x0, at t = 0, the solution is

x(t) = x0 cosω0t. (12.10)

To obtain the total radiative power of a simple harmonic oscillating electron,
we compute the time average of the acceleration for insertion into Eq. 12.6. The
time derivitives of x(t) are ẋ(t) = −ω0x0 cosω0t and ẍ(t) = −ω2

0x0 sinω0t. Over
a single cycle period T = 2π/ω0, from t1 = t − T /2 to t2 = t + T /2, centered
on arbitrary time t and separated by exactly a single oscillation cycle such they
arise at the same phase in adjacent cycles, we have

〈

ẍ2(t)
〉

=
1

T

∫ t2

t1

ẍ2(t) dt =
ω4

0x
2
0

T

∫ t2

t1

cos2 ω0t dt =
ω4

0x
2
0

2
, (12.11)

Thus, the total radiative power of a simple harmonic oscillating electron is

Pλ =
2e2

3c3

〈

ẍ2(t)
〉

=
e2ω4

0x
2
0

3c3
, (12.12)

which is independent of time for steady state oscillations.

1For linear ordinary differential equations, the form of the solution can be written as the
sum of individual solutions.

2We remind the reader that each complex number C̃ = A + iB has a complex conjugate
C̃∗ = A− iB, such that C2 = C̃C̃∗ = (A + iB)(A − iB) = A2 + B2. Also, a complex number
can be written C̃ = C exp iθ = C(cos θ + i sin θ), where A = C cos θ and B = C sin θ. The
ratio of the imaginary part to the real part is B/A = tan θ.
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12.1.3 Damped oscillator

Since the accelerating electron is radiating electromagnetic energy, the ampli-
tude of the harmonic oscillations will decay over time. Thus, for the classical
oscillator scenario, we can view the electric field generated by the accelerating
electron as providing a damping force. The damping is interpreted as a radiation
reaction force that is proportional to the instantaneous velocity,

Fγ(t) = −meγẋ(t), (12.13)

where γ is called the damping constant. The rate at which the oscillations decay
and the time dependence of the electron acceleration, which governs the time
dependence of the total radiative power by the oscillating electron, all depend
upon the magnitude of the damping constant.

The equation of motion with damping is

ẍ(t) + γẋ(t) + ω2
0x(t) = 0. (12.14)

As with the simple harmonic oscillator, if we again assume x(t) = exp{λt}, we
obtain the characteristic polynomial λ2 + γλ + ω2

0 = 0, which has two roots,
λ = −γ/2 ±

√

(γ/2)2 − ω2
0 ; there are three general solutions depending upon

the ratio (γ/2)/ω0. We consider the “underdamped” case in which γ/2 < ω0,
which yields λ = −γ/2 ± i

√

ω2
0 − (γ/2)2. The underdamped condition is the

only one of the three in which oscillations are manifest. We again employ the
superposition principle to obtain

x(t) = exp
{

−γ

2
t
}

[

C̃ exp {iωt} + C̃∗ exp {−iωt}
]

, (12.15)

where ω =
√

ω2
0 − (γ/2)2. The real part of the eigenvalues govern the rate of

decay and the imaginary part is the angular frequency of the damped oscillation.
From Eq. 12.9 and applying the boundary condition of maximum displacement
x0 at t = 0, we have

x(t) = x0 exp
{

−γ

2
t
}

cosωt (12.16)

Note that the damped oscillation frequency, ω, is shorter than the eigenfre-
quency, ω0. The electron oscillates with a longer cycle time than the simple
harmonic oscillator and the amplitude decays with an e–folding time of γ/2,
where γ is the proportionality constant between Fγ(t) and ẋ(t) in Eq. 12.13,

We obtain the decay rate (value of the damping constant γ), by recognizing
the fact that, averaged over a single cycle, the rate of work done on the electron
by the radiation reaction force is equal to the negative of the radiative power
loss, Pλ(t),

dWγ

dt
= 〈Fγ(t) · ẋ(t)〉 = −Pλ(t), (12.17)

where Pλ(t) is taken from Eq. 12.6. The time average of Fγ(t) · ẋ(t) over a
single oscillation cycle is

〈Fγ · ẋ〉 = −meγ 〈ẋ(t) · ẋ(t)〉 = −meγ
1

T

∫ t2

t1

ẋ2(t) dt, (12.18)
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and the radiative power loss is

Pλ(t) =
2e2

3c3

〈

ẍ2(t)
〉

=
2e2

3c3

1

T

∫ t2

t1

ẍ2(t) dt, (12.19)

where , T = 2π/ω, and where t1 = t − T /2 and t2 = t + T /2 are evaluated at
identical phases in the oscillation centered on t.

The remaining steps to obtain the damping constant γ are to compute
the first and second time derivitives of Eq. 12.16, perform the integrations in
Eqs. 12.18 and 12.19, equate the rate of work done and the power loss (via
Eq. 12.17) and solve for γ. Because of the decay of the damped oscillator am-
plitude with time, the symmetry of x(t), ẋ(t), and ẍ(t) for a simple oscillator
is broken at times t1 and t2 = t1 + T . Thus, the integrals are non trivial. The
mathematics are simplified with little loss of generality by assuming γ & ω0.
Under this condition the damped oscillation frequency, ω, can be approximated
by the eigenfrequency, ω0. Moreover, the damping rate of the amplitude is neg-
ligible over a single cycle period T ! 2π/ω0. Thus, the solution for the damped
oscillator (Eq. 12.16) used to perform the integrations can be approximated us-
ing the simple oscillator3 (Eq. 12.10). Applying this assumption, the integral in
Eq. 12.18 evaluates to ω2

0x
2
0/2 and the integral in Eq. 12.19 evaluates to ω4

0x
2
0/2.

Equating Eqs. 12.18 and 12.19,

−meγ
ω2

0x
2
0

2
= −2e2

3c3

ω4
0x

2
0

2
. (12.20)

we find the damping constant,

γ =
2e2ω2

0

3mec3
= 6.2664× 10−24 ω2

0 sec−1, (12.21)

for an underdamped oscillating electron in which its emitted radiation provides
a radiative reaction damping force. It is derived assuming the work done by
the force is equal to the electrons radiative power loss. Clearly, the assumption
that γ & ω0 is well founded.

12.1.4 Forced damped oscillator

Consider an electron embedded in a monchromatic plane wave beam in which
the oscillating electric field is given by Eq. ??. Placing the electron at r = 0,
the force acting on the electron is

Fλ(t) = eE0 cosωt, (12.22)

3Most treatments (e.g., Mihalas, 1978; Shu, 1991; Rybicki & Lightman, 2004) carry out
the mathematical formalism to show that the radiative reaction force is proportional to

...
x (t),

which is difficult to interprete. Following this result, the assumption of a simple harmonic
oscillator is then applied in order to obtain

...
x (t) = −ω2ẋ(t). The reader is referred to other

works if such details are sought. Here, to simplify obtaining the result, we begin with the
assumption γ # ω0 and obtain the identical expression for γ.
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where ω = 2πc/λ is the angular frequency for photons with wavelength λ.
The equation of motion governing the electron is that of a damped harmonic
oscillator, but with a driving force

ẍ(t) + γẋ(t) + ω2
0x(t) = F (t) =

e

me
E0 cosωt, (12.23)

where the damping force arises from the radiative power loss of the electron (the
radiative reaction force discussed in § 12.1.3), with γ given by Eq 12.21.

The solution to Eq. 12.23 has a transitory solution and a steady state solu-
tion. The steady state solution is obtained most readily in the complex plane.
Since any real quantity can be expressed as a component of a complex quantity
(following Eq. 12.9), we can rewrite the driving force, Eq. 12.22, as a real plus
imaginary part4,

F (t) = F̃ exp {iωt} = F̃ (cosωt + i sinωt) F̃ = F0 exp {iφ} , (12.24)

where F̃ is a complex coefficient with amplitude F0 = eE0/me and phase mod-
ulation exp{iφ} = cosφ + i sinφ. We also write the (yet to be determined)
position as real and imaginary parts

x(t) = x̃ exp {iωt} = x̃ (cosωt + i sinωt) x̃ = x0 exp {iφ} , (12.25)

where x̃ is complex with amplitude x0 and phase exp{iφ}. The full expression
for the complex solution for the electron motion is

x(t) = x̃ exp{iωt} = x0 exp{iφ} exp{iωt} = x0 exp{i(ωt + φ)}. (12.26)

The real part of Eq. 12.26 is taken as the solution to Eq. 12.23. Thus,

x(t) = x0 cos(ωt + φ), (12.27)

for which we need to determine the amplitdue x0 and phase angle φ. From
Eq. 12.25, the derivitives of x(t) are

ẋ(t) = iωx̃ exp {iωt} ẍ(t) = (iω)2x̃ exp {iωt} . (12.28)

Substitution into Eq. 12.23 and subsequent cancellation of the exp{iωt} terms
yields

(iω)2x̃ + (iω)γx̃ + ω2
0x̃ = F̃ . (12.29)

Solving for x̃ provides the complex coefficient of x(t),

x̃ =
F̃

ω2
0 − ω2 + iγω

, (12.30)

4See footnote 2 of this chapter. A slight difference here is that for ease of solution, we write
Eqs. 12.24 and 12.25 as the product two complex numbers (i.e., we multiple by a complex
coefficient). This accounts for the fact that the electron motion will not be in phase with the
driving force (the complex coefficient is the phase lag term).
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which is interpreted as the amplitude of the phase modulation. The electron
oscillation amplitude is obtained from x2

0 = x̃x̃∗, yielding

x0 =

[

F̃

(ω2
0 − ω2 + iγω)

· F̃ ∗

(ω2
0 − ω2 − iγω)

]1/2

=

[

F0 exp{iφ}
(ω2

0 − ω2 + iγω)
· F0 exp{−iφ}
(ω2

0 − ω2 − iγω)

]1/2

=
F0

[(ω2 − ω2
0)

2 + γ2ω2]
1/2

=
(e/me)E0

[(ω2 − ω2
0)

2 + γ2ω2]
1/2

.

(12.31)

where x̃∗ and F̃ ∗ are the complex conjugates of x̃ and F̃ . Note that the am-
plitude of the electron oscillation depends upon the driving force frequency, ω,
and has maximum eE0/meγω0 when ω = ω0 (a phenomonon called resonance),
where E0 is the amplitude of the oscillating electric field of the incident beam.

Substituting for x0 in Eq. 12.27, we have

x(t) =
(e/me)E0 cos(ωt + φ)

[(ω2 − ω2
0)

2 + γ2ω2]
1/2

. (12.32)

Thus, we see that, once steady state is achieved, the electron oscillates at the
frequency of the electic field of the incident beam. Furthermore, the oscillation
is out of phase with the electric field by phase angle φ, which can easily be shown
to be φ = − tan−1[γω/(ω2

0 −ω2)]. For underdamped conditions near resonance,
the electron lags the electric field by φ ! π/2.

Following the steps taken in § 12.1.2, we employ Eq. 12.6 to obtain the total
power radiated over all solid angles from the time average of the real part of the
electron acceleration,

ẍ(t) = −ω2x(t). (12.33)

Carrying out the time average (see Eq. 12.11), we obtain 〈ẍ(t)〉 = ω2x2
0/2, from

which we find the steady state power of electromagentic energy emitted by the
electron

Pλ(ω) =
e4ω4

3m2
ec

3

E2
0

(ω2 − ω2
0)

2
+ γ2ω2

, (12.34)

subject to a monochromatic beam with electric field amplitude E0 and wave-
length λ = 2πc/ω (we prefer λ to denote the monochromatic nature of radia-
tion, however, it is presently convenient to write Eq. 12.34 as a function of ω).
For ω = ω0, the eigenfrequency of the system, the power is a maximum with
Pmax = (e4ω2

0/3m2
ec

3γ2)E2
0 .
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12.1.5 Cross section of the classical oscillator

From the principles of absorption and scattering cross sections discussed in
§ ??, the total absorption (scattering) cross section per interacting particle at
frequency ω is defined as the power absorbed (scattered over all solid angles)
from an incident beam normalized to the beam flux,

NTσ(ω) =
Pλ(ω)

Fb(ω)
, (12.35)

where we carry over the angular frequency notation for the classical oscillator
and explicitely include the monochromatic frequency of the beam flux.

For the following, allow the beam to be polychromatic with the stipulation
that the flux is constant at each frequency, i.e., that the specific intensity distri-
bution is constant or the electric field amplitude is constant as a function of ω.
As derived in § ??, the flux in the incident beam is then Fb(ω) = (c/8π)E2

0 at all
frequencies. As will be demonstrated below, this assumption is not required over
a large range of frequencies, but only over an extremely narrow range centered
on the eigenfrequency ω0 of the classical oscillator.

We equate the power radiated into all solid angles by the forced accelerating
electron (given by Eq. 12.34) as the power scattered out of the incident beam.
Barring the radiation scattered back into the direction of the post interaction
beam (which is effectively zero since the angular distribution of the scattered
power is dP(φ, θ)/dΩ ∝ sin2 θ, where θ = 0 in the beam direction), the total
power scattered is also equatable to the power absorbed from the beam in a
closed system where energy is conserved.

The classical oscillator is a single electron, so that NT = 1. Since the flux
in the incident beam is Fb(ω) = (c/8π)E2

0 , the frequency dependent total cross
section for the classical oscillator is

σ(ω) =
Pλ(ω)

Fb(ω)
=

e4ω4

3m2
ec3

E2
0

(ω2 − ω2
0)

2
+ γ2ω2

(

cE2
0

8π

)−1

(12.36)

which simplifies to,

σ(ω) =
8πe4ω4

3m2
ec4

1

(ω2 − ω2
0)

2
+ γ2ω2

. (12.37)

The behavior of Eq. 12.37 is such that the half–height full–width of σ(ω)
is ∆ω ! γ/2. From Eq. 12.21, γ/ω2

0 ! 6.3 × 10−24, so that the fractional
full width is ∆ω/ω0 ! (ω0/2)(γ/ω2

0) ! 3.15 × 10−24ω0. For ultraviolet and
optical transitions, ω0 ! 1016 sec−1 (for example, neutral hydrogen Lyα has
ω0 = 1.549 × 1016 sec−1), yielding ∆ω/ω0 ! 10−8. Thus, Eq. 12.37 is highly
peaked for the eigenfrequncy of atomic transitions (our assumption of a constant
flux over this range is thus quite sound). We can thus apply the approximation

(

ω2 − ω2
0

)

= (ω + ω0) (ω − ω0) ! 2ω0

(

ω2 − ω2
0

)

. (12.38)
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Invoking Eq. 12.38, and replacing all other appearances of ω in Eq. 12.37 with
ω0, we obtain

σ(ω) =
2πe4ω2

0

3m2
ec4

1

(ω − ω0)
2 + (γ/2)2

. (12.39)

Since the relationship between the damping constant and the eigenfrequency is
γ = 2e2ω2

0/3mec3, further manipulation yields

σ(ω) =
2πe2

mec

γ/2

(ω − ω0)
2 + (γ/2)2

, (12.40)

Within a factor 1/π, the second factor of Eq. 16.3 is known as the Cauchy prob-
ability distribution, Breit–Wigner distribution, or more commonly by physicists
and astronomers as the Lorentz distribution (or Lorentzian function). Substi-
tuting x = ω, and writing ∆x = x−x0 and also writing y = γ/2, the Lorentzian
is

L(x) =
1

π

y

(x − x0)2 + y2
=

1

π

y

(∆x)2 + y2
, (12.41)

for which the peak amplitude is 1/πy. Thus, y is known as the scale parameter.
The half–width at half–maximum, fwhm/2, is also given by y. The peak is at
x0, which is known as the location parameter. The area is unity

1

π

∫ ∞

0

y

(x − x0)2 + y2
dx =

1

π

∫ ∞

−∞

y

(∆x)2 + y2
d∆x = 1. (12.42)

In Figure 12.1, Eq. 12.37 is plotted for various values of γ/ω2
0. As the ratio

decreases, the function approaches the form of a Lorentzian, such that by γ/ω2
0 =

10−5, the fractional difference between the two functions never exceeds 0.3%
within ten half–width at half maximum. For the classical oscillator, γ/ω2

0 !
10−24; the Lorentzian is an excellent approximation for the cross section.

In terms of frequency, we have ∆ω = 2π∆ν, where ∆ω = ω − ω0 and
∆ν = ν − ν0; we can thus write Eq. 16.3 as

σ(ν) =
e2

mec

γ/4π

(ν − ν0)2 + (γ/4π)2
, (12.43)

for which y = γ/4π. Applying Eq. 16.4 (accounting for the cancelled factor of
π), the integrated absorption coefficient over all frequencies is

∫ ∞

0
σ(ν) dν =

∫ ∞

−∞
σ(∆ν) d∆ν =

πe2

mec
. (12.44)

In terms of wavelength, we have∆ω = (2πc/λ2
0)∆λ, where∆λ = λ−λ0; Eq. 16.3

can then be written

σ(λ) =
e2

mec

λ2
0

c

γλ2
0/4πc

(λ − λ0)2 + (γλ2
0/4πc)2

, (12.45)
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Figure 12.1: A comparison between the full expression of the cross section for the classical
oscillator, σ(ω), as given by Eq. 12.37, and the Lorentzian version (designated L in the figure
legend), given by Eq. 12.39 derived from the fact that γ # ω2

0 . The amplitude of the curves
have been normalized for ease of comparison. The shapes are independent of the value of ω0;
they depend only upon the ratio γ/ω2

0 . For γ/ω2
0 ≤ 10−5, the two functions differ by no more

than 0.0002% at the peak and by no more than 0.3% well into the wings. Since γ/ω2
0 % 10−24

for the classical oscillator, the application of a Lorentzian is well founded.

for which y = γλ2
0/4πc. The integrated absorption coefficient over all wave-

lengths is
∫ ∞

0
σ(λ) dλ =

∫ ∞

−∞
σ(∆λ) d∆λ =

πe2

mec

λ2
0

c
. (12.46)

The integration of σ(ν) over all frequencies and of σ(λ) over all wavelengths
provides the total power removed (or scattered) by the classical oscillator (a
single electron subjected to a beam).

12.1.6 Limitations of the classical oscillator

The classical oscillator is a heuristic tool, a model of a free electron subjected to
a classical monoenergetic plane–wave electromagnetic beam. The usefulness of
the model is that the functional form of the derived cross section, a Lorentzian,
is identical to the functional form derived from the full quantum mechanical
treatment of atomic bound–bound transitions. However, direct application of
the classical oscillator cross section to atomic transitions is not entirely possible
due to three limitations. These limitations are due to the quantum mechanical
physics of bound–bound transitions that simply cannot be addressed via the
classical oscillator scenario.
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