
Chapter 9

The structure of hydrogen

One of the many goals of the astronomical spectroscopist is to interpret the
details of spectral features in order to deduce the properties of the radiating
or absorbing matter. In Chapters 4 and 5, we introduced much of the for-
malism connecting the atomic absorption features observed in spectra with the
all–important atomic absorption coefficient, α(λ). The mathematical form of
absorption coefficients are derived directly from the theoretical model of the
atom. As such, it is essential to understand the internal working nature of the
atom in order to deduce the physical conditions of the matter giving rise to
observed spectral features.

The model of the atom is simple in principle, yet highly complex in de-
tail. Employing only first–order physics, we have been extremely successful at
formulating the basic atomic model, including the internal energy structure,
transition probabilities, and the spectra of the various atoms and ions. How-
ever, first–order physics is not complete enough to precisely describe the internal
energy structure of the atom nor the observed spectral features. Enter the com-
plexity of higher–order physics, which are most easily discussed in terms of small
corrections to the first–order model.

The simplest atom is hydrogen, which comprises a single proton for the
nucleus and a single orbiting electron. The complexity of the physics increases
as the number of nuclear protons and orbiting electrons increases. The hydrogen
atom serves to clearly illustrate the effects of higher–order corrections while
avoiding the complication of multiple interacting electrons.

In this chapter, we focus on the first–order physics, internal energy structure,
and resulting spectrum of neutral hydrogen and hydrogen–like ions (those with a
single orbiting electron). We begin with the semi–classic Bohr model, including
Sommerfeld’s relativisitic corrections. We then briefly address the wave nature
of matter. After introducing some basic quantum mechanics, including the
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178 CHAPTER 9. THE STRUCTURE OF HYDROGEN

Hamiltonian, wave functions, and expectation values, we then discuss the wave
model of the atom. The non–relativistic Schrödinger equation and resulting
stationary states of hydrogen are presented. This chapter is effectively a highly
focused summary of the extensive material available in many standard texts on
qunatum mechanics.

In Chapters 10 and 11, we will introduce a property of the electron known
as spin, discuss the relativistic wave model, including several higher order mod-
ifications to the energy states, and apply the principles developed to model the
hydrogen atom to more complex atoms, discuss transition probabilities, and
provide the expressions for the atomic absorption cross sections.

9.1 The semi–classical model

The atomic model proposed by Bohr (1913) is a semi–quantum mechanical
approach to what is essentially classical physics. The model applies well to
neutral hydrogen atoms and to so–called hydrogen–like ions (those with multiple
protons in their nucleus but only a single bound electron). The Bohr model is
based upon two postulates:

1. The electron moves in circular orbits about the nucleus. The angular
momentum of the electron must be an integer number of Planck’s constant
h. Thus, only certain electron orbits are allowed.

2. The orbit of an electron is a stationary state. An atom emits or absorbs
electromagnetic radiation (a photon) only when its electron changes orbits.
The energy of the photon equals the energy difference of the initial and
final electron orbit.

9.1.1 Stationary states

Bohr’s first postulate is expressed
∮

pφdφ =

∮

(

mNωr2
N + meωr2

e

)

dφ = nh, (9.1)

where pφ is the total azimuthal angular momentum of the atom, assuming the
orbit is confined to a plane. The geometric configuration is illustrated in Fig-
ure 9.1a, where rn = rN + re for a nuclues of mass mN and electron of mass me

orbiting about a common center of mass in state n with angular frequency ω.
Since the orbits are postulated to be circular, and applying mNrN = mere, we
have

pφ = µωr2
n = nh̄, (9.2)

where h̄ = h/2π, and where µ = me/(1 + me/mN), is the reduced mass of the
electron. Assuming a Coulomb potential, V (r) = −Ze2/rn, where Ze is the
charge of the nucleus, the total energy of the atoms in state n is

En = −Ze2

2rn
, rn =

h̄2

µe2

n2

Z
= a0

n2

Z

me

µ
, (9.3)
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Figure 9.1: (a) The geometric configuration of the Bohr model in state n. (b) A schematic
of the Bohr model with the relative sizes of the first five orbits in units of a0. The limit
n = ∞ is not to scale. When electrons move from one bound orbit to another, photons
with energies given by the energy difference of the orbits are absorbed (upward transition) or
emitted (downward transition). A transition between n = 4 and n = 2 is shown, for which
the photon has energy E4 − E2. Ionization from n = 1 is also shown.

where

a0 =
h̄2

mee2
= 5.29177× 10−9 cm (9.4)

is the Bohr radius for an infinite mass nucleus, and where the ratio me/µ ex-
plicitly accounts for the reduced mass of the electron. For hydrogen µ/me =
0.99946. For helium µ/me = 0.99986.

9.1.2 Orbital energy

Substituting rn into En (Eq. 9.3), we obtain the binding energy for orbit n,

En = −µe4

2h̄2

Z2

n2
= − e2

2a0

Z2

n2

µ

me
= −mec2

2

(Zα)2

n2

µ

me
, (9.5)

where the last form provides the energy in terms of the rest energy of the
electron, mec2, and the fine structure constant α = e2/h̄c. The constant α
will prove to be a fundamental quantity for atomic spectra once relativistic and
higher–order effects are taken into account. We define the Rydberg constant,

R =
mee4

2h̄2 =
e2

2a0
=

mec2

2
α2 = 2.17987× 10−11 erg = 13.60570 eV, (9.6)
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180 CHAPTER 9. THE STRUCTURE OF HYDROGEN

for an infinite mass nucleus, i.e., µ = me. In general, for a hydrogen–like atom
with nuclear charge Ze,

RZ = Z2 µ

me
R. (9.7)

We can thus rewrite Eq. 9.5 in the simplified form

En = −RZ

n2
. (9.8)

For hydrogen, Z = 1 and µ/me = 0.99946, yielding RH = 13.59843 [eV].

9.1.3 Transitions and spectra

According to Bohr’s second postulate, an electron is induced to move from one
bound orbit to another via the absorption of a photon (resulting in a gain of
energy to a higher n, less bound state) or emission of a photon (loss of energy
to a lower n, more bound state). Such a state transition, called a bound–bound
transition, is illustrated in Figure 9.1 between n′ = 2 and n = 4, where we
denote n as the upper level principle quantum number and n′ as the lower level
quantum number. The photon energy is the difference between the upper level
and lower level binding energies,

hν =
hc

λ
= En′n = En − En′ , (9.9)

where ν is the photon frequency, and λ is the photon wavelength. The transition
energy is then

En′n = RZ

[

1

n′2
− 1

n2

]

. (9.10)

For each lower state, n′, there is a series of allowed energy differences for
n > n′. Consider neutral hydrogen (Hi); for n′ = 1, the series is called the
Lyman series, and for n′ = 2, it is called the Balmer series. It is customary to
denote the first transition in the Lyman series (n′ = 1 ↔ n = 2) as Lyα, the
second transition in the Lyman series (n′ = 1 ↔ n = 3) as Lyβ, etc., in order
of the Greek alphabet. For larger n, the transitions are simply numbered, i.e.,
Ly8, etc. The ionization threshold (n = ∞), is known as the Lyman limit. The
notation is similar for the Balmer series except that “H” is the prefix, i.e., Hα
(n′ = 2 ↔ n = 3), Hβ (n′ = 2 ↔ n = 4), Hγ (n′ = 2 ↔ n = 5), etc. The
Lyman series gives rise to ultraviolet spectral lines (912–1216 Å), whereas the
Balmer series gives rise to optical spectral lines (3646–6563 Å).

The H i Lyman and Balmer series, and the corresponding n′ = 1 and n′ = 2
He ii series, are illustrated in Figure 9.2 as a function of transition wavelength.
The n′ = 1 and n′ = 2 series of He ii lie in the far ultraviolet (228–304 Å for
n′ = 1; 912–1640 Å for n′ = 2). The dotted line provides the series limit. For
presentation purposes, only the first 20 transitions are shown; thus there is a an
artificial gap between the last shown transition and the series limit. Note that
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Figure 9.2: The spectra of the H i Balmer (n = 2) and Lyman (n = 1) series (top panels)
and the corresponding spectral series for He ii (bottom panel). The first 20 transitions are
shown for each, including the series limits, which are shown as dotted lines. Note that there
are some nearly identical transition wavelengths in the H i Lyman series and the n = 2 He ii

series.

several of the spectral lines in the He ii n′ = 2 series have virtually identical
wavelengths to those in the H i Lyman series1.

9.1.4 Energy structure

Due to the many possible energy transitions the energy structure is elucidated
using various functional quantities. Written in terms of the differences of the
orbital energy, En, these terms include the transition energy, the excitation
potential, the ionization energy, and the ground state ionization potential. Here,
we briefly define each of these energy terms, noting that the transition energy,
En′n, was defined in Eq. 9.10.

Excitation potential

The ground state (lowest energy) of hydrogen or hydrogen–like ions is n′ = 1,
given by E1 = −RZ. The excitation energy is the excess stored internal energy of

1It would seem that this might cause serious confusion for identfying these particular
spectral features in astronomical spectra. In practice, this is not a problem; in atrophysical
conditions where H i persists primarily in the ground state, n′ = 1, the same holds for He ii.
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182 CHAPTER 9. THE STRUCTURE OF HYDROGEN

the atom when the electron orbits above the ground state. The energy required
to excite an atom to level n > 1 from level n′ = 1 is called the excitation
potential, and is obtained from Eq. 9.10 according to

χn = En − E1 = RZ

[

1 − 1

n2

]

. (9.11)

The excitation potential of orbit n is often tabulated in units of electron volts
[eV]. Note that the excitation potential of the ground state is always χ1 = 0 eV,
and that χn increases with increasing n.

Ionization energy

The minimum photon energy required to liberate, or free, an electron originally
bound in orbit n′ is called the ionization energy, and is obtained by setting
n = ∞ in Eq. 9.10,

EIn′ = E∞ − En′ = −En′ =
RZ

n′2
, (9.12)

where the subscript “in′” denotes this is ionization from level n′.
Incident photons with energies, Eγ = hν = hc/λ, equal to or greater than

EIn (using n generically) are potential ionizing photons, i.e., those with frequen-
cies or wavelengths in the range

ν ≥ RZ

hn2
λ ≤ hcn2

RZ

. (9.13)

Photons with Eγ = EIn will liberate the electon from the atom, but with
no kinetic energy. For Eγ > EIn, the additional energy above and beyond the
ionization energy imparts kinetic energy (velocity) to the free electron

v =

[

2(Eγ − EIn)

me

]1/2

. (9.14)

Ionization potential

The maximum value of the excitation potential is called the ionization potential;
it is the minimum energy required to ionizate the atom from the ground state,
n′ = 1. As such, it is equal to the ionization energy of the ground state. The
ionization potential is given by setting n′ = 1 and n = ∞ in Eq. 9.10, giving,

χI = E∞ − E1 = −E1 = RZ. (9.15)

It is possible to also define the ionization potential from an arbitrary exited
state n > 1, which might be represented with the symbol χIn. However, such
a quantity is not commonly tabulated as a “potential energy” when discussing
the internal energy structure of the atom. Recall that EIn, given by Eq. 9.12,
provides the energy required to ionize an atom from an arbitrary excited state
n > 1.
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9.1. THE SEMI–CLASSICAL MODEL 183

Synopsis

In Table 9.1, expressions for the orbital energy, En, transition energy, En′n,
excitation potential, χn, ionization energy, EIn, and the ground state ioniza-
tion potential, χI, are listed for convenience. Note that the ionzation energy
from level n is simply the negative of the orbital binding energy, and that the
ionization potential from the ground state is simply the Rydberg constant.

Table 9.1: Atomic Energies and Potentials

Energy/Potential Symbol Expresssion Equation

Orbital Energy En = −RZ/n2 9.8
Transition Energy En′n = RZ(1/n′2 − 1/n2) 9.10
Excitation Potential χn = RZ(1 − 1/n2) 9.11
Ionization Energy EIn = RZ/n2 9.12
Ionization Potential χI = RZ 9.15

The expressions for the energies listed in Table 9.1 do not include rela-
tivistic and higher–order corrections and thus do not yield precise values. In
multi–electron atoms and ions, the ground state configuration is not n = 1; the
ionization potential for these atoms and ions is still the negative of the binding
energy, but for the least tightly bound electron (though the energies derived
from the Bohr model break down due to additional energy terms arising from
electron–electron interactions and charge shielding of the nuclear charge).

9.1.5 Energy diagrams

Energy diagrams are a useful visual aid for illucidating the energy structure and
transition energies of the atom. Energy diagrams of neutral hydrogen (H i) and
the hydrogen–like, singly ionized helium ion (He ii) are shown in Figures 9.3a
and 9.3b. The first ten energy levels are marked with horizontal lines labeled
n = 1, etc. The left axes are the excitation potentials (Eq. 9.11) and the right
axes are the bound electron energies (Eq. 9.8). Note that the relative structures
of the energy levels for the two example ions are in direct proportion by the
scaling of Z2(µ/me).

As previously mentioned, the excitation potential, χn, is 0 [eV] for the
ground state, which has electron binding energy E1 = −RZ. As n increases
above the ground state, the excitation potential increases, always has positive
value, and reaches a maximum χ∞ = −E1 = RZ. However, the energy of a
bound electron is always negative. As n increases, the binding energy decreases
in magnitude (getting less negative) until it reaches a maximum value (on an
absolute sacle) of 0 [eV] at n = ∞. In this sense, the excitation potential and
the orbital energy are complementary.
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184 CHAPTER 9. THE STRUCTURE OF HYDROGEN
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Figure 9.3: Energy diagrams for neutral hydrogen (H i, panel a) and singly ionized helium
(He ii, panel b). The left axes give the excitation potential, χn [eV], and the right axes give
the electron energy, En [eV]. The horizontal lines represent the respective binding energies for
a given n. (a) For H i, the first four transitions are shown as vertical lines for the n = 1, or
Lyman series, as is the Lyman limit. Also shown are the first three transitions of the n = 2,
or Balmer series, as is the Balmer limit. The corresponding wavelengths of the photons are
provided (in angströms) for each transition. (b) For He ii. The same as for H i, except that
the energies are all scaled by Z2(µ/me). (The energies in parenthesis are computed from the
expressions listed in Table 9.1; they do not include relativistic and higher–order corrections
and are thus not precise values.)

9.1.6 Relativistic corrections

The Bohr model provided a self–consistent theoretical vision of the atom and
accurately predicted the observed energy structure and resulting resonant fre-
quencies of transitions (as diagramed in Figrue 9.3). However, high resolution
spectral observations at the time showed that the Bohr energies were not pre-
cisely correct (the observed energies are shifted slightly) and that several of the
transitions have finer structure (miniscule energy splittings).

Sommerfeld (1916) generalized the Bohr model to include elliptical orbits
and first order classical relativistic effects. The principle quantum number of
an elliptical orbits is the sum of a radial and an azimuthal quantum number,

n = nr + k (nr = 0, 1, 2, 3...) (k = 1, 2, 3, 4...). (9.16)

Sommerfeld found that the energies, En, and the semi–major axes, an, of el-
liptical orbits are identical to the circular orbit energies and radii of the Bohr
model (see Eq. 9.3), regardless of the combination of nr and k. However, the
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9.1. THE SEMI–CLASSICAL MODEL 185

semi–minor axes of the orbits vary with k according to bnk = an

√

1 − ε2nk,
where ε2nk = 1 − k2/n2. In Figure 9.4, the relative dimensions of several Bohr–
Sommerfeld elliptical orbits are shown on the scale applied to the Bohr circular
orbits illustrated in Figure 9.1.
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Figure 9.4: Schematic of relative shapes (to scale) of elliptical electron orbits for azimuthal
quantum numbers k = 1, 2, and 3. The radial quantum number, nr , can take on all integer
values, including the condition for circular orbits, nr = 0. Thus, the total quantum number,
n = nr + k, has a minimum at n = k (circular orbit). Orbits up to n = 5 are illustrated, for
which the length of the semi–major axis is given by the scale on the left. (Figure adapted
from Herzberg, 1944)

The degeneracy of the energies, En, for various combinations of nr and
k arise because the periodicities of the radial degree of freedom and the az-
imuthal degree of freedom are spatially aligned (i.e., the ellitpical orbits do not
precess, so that the sum nr + k represents a single quantum condition). A
relativistic treatment of the electron breaks the degeneracy; the mass varia-
tion in the electron due to its variable velocity along its orbital path results
in precessing orbits. From pφ = µωr2

n = nh̄, the electron velocity of the
n = 1 circular ortbit is v1 = e2/h̄. The mass correction is m′

e = γme, where
γ = 1/

√

1 − v2
1/c2 = 1/

√
1 − α2, and where α = e2/h̄c is the fine structure

constant mentioned above. This yeilds a ∼ 0.003% increase in me.

For the generalize elliptical orbits shown in Fig 9.4, Sommerfeld showed
that the azimuthal angular precessions of the semi–major axes per orbit cycle
are given by ∆φ = 2π(γk −1) where γk = 1/

√

1 − (Zα)2/k2. In Figure 9.5a, an
example of the precession of a Bohr–Sommerfeld elliptical orbit is illustrated.
The orbits are rosettes formed by the precession of the semi–major axis, which
advances by an angle ∆φ each cycle. For hydrogen, the precession is on the
order of 30 seconds of arc for k = 1.

Neglecting terms higher than α2, the fractional energy perturbation to the
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186 CHAPTER 9. THE STRUCTURE OF HYDROGEN

Bohr energy for bound state nk is

∆Enk

En
= − (Zα)2

n2

(

3

4
− n

k

)

, (9.17)

so that energy of the state is

Enk = En (1 + ∆Enk) (9.18)

where En = −RZ/n2 is the Bohr energy. In Figure 9.5b, the relativistic correc-
tions due to Eq. 9.17 are shown in units of α−2∆Enk/En for hydrogen. For all k,
the fractional energy correction is negative, so that the electron binding energy
is increased (Enk more negative, as illustrated in Figure 9.5b). As k increases
for a given n, the energy splittings become progressively less pronounced.

/
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Figure 9.5: (a) The precession of hydrogen elliptical orbits in due to the relativistic cor-
rections (Figure adapted from Semat, 1955) (b) The magnitude and direction of the energy
shifts/splits for hydrogen in units of α−2∆Enk/En, given by Eq. 9.17, presented for orbits
with principle quantum number in the range n = 1 to 5. The quantum number k is incre-
mented upward for each n. The circular Bohr orbits (n = k) have the smallest corrections.

Sommerfeld showed that the full expression for the energy of the electron in
an orbit nk, is given by

Enk = µc2

{

1 +

[

(Zα)2

n − k + [k2 − (Zα)2]1/2

]2
}−1/2

, (9.19)

where we note that mec2 = 2R/α2. Note that an energy shift results from the
relativistic correction even for circular orbits in which nr = 0 and k = n (the
Bohr orbits).

In order that the number of energy splittings predicted by the model conform
to observations, Sommerfeld postulated that transitions must obey

∆k = ±1. (9.20)

The allowed transitions based upon this selection rule are illustrated in Fig-
ure 9.6. The Lyα transition can only occur between the n = 2, k = 2 orbit and
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Figure 9.6: Energy diagram of the Bohr–Sommerfeld model of neutral hydrogen for the
first five levels, n = 1, 2, 3, 4, and 5. The energy scales are identical to those on Figure 9.3.
For each n, the Bohr energies are labeled for reference, but in fact the energies are slightly
offset for each k state, which are presented horizontally. For k = n, the orbits are circular,
and for a given n, the orbit eccentricities increase to the left in the diagram. Applying the
∆k = 1 Sommerfeld selection rule results in the allowed transition illustrated with angled
verticle lines. The Lyman and Balmer series are shown with thicker lines.

the n′ = 1, k = 1 orbit; there is no predicted fine structure splitting in any of
the Lyman series transitions. Note that three splittings are predicted for each
Balmer series transition.

Following Bohr’s second postulate, the energy of absorbed or emitted pho-
tons is equal to the energy difference

hν = hc/λ = Enk − En′k′ . (9.21)

Though the relativistic energy corrections provides improved agreement with the
observed spectrum of hydrogen, especially in its accounting of fine energy split-
tings, the predicted wavelengths are not accurate within experimental precision.
For example, the observed wavelength of the Lyα transition is 1215.6701 Å, the
Bohr model predicts 1215.684 Å, and the Bohr–Sommerfeld model (Eq. 9.19)
predicts 1215.663 Å.

In addition to the inacccuracies in the predicted wavelengths, the model
incorrectly predicts the number of observed splittings. As we shall see in Chap-
ter 10, in the full quantum wave mechanics model, Lyα is observed to have
two fine structure splittings and five hyperfine structure splittings. In the final
analysis, the observed energy splittings of atomic transitions are not based on
classical precessing elliptical orbits.
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188 CHAPTER 9. THE STRUCTURE OF HYDROGEN

9.2 The wave nature of matter

The Bohr and Bohr–Sommerfeld models have several short comings: (1) the
theoretical formalism is not a full quantum mechanical treatment of the atomic
physics, but a semi–classical model based upon ad hoc hypotheses, (2) the
observed energy splitting of transitions are not in precise agreement with model
predictions, (3) there is no theoretical mechanism to account for the observed
relative intensities of different transitions, (4) the quantization and dynamics
do not account for the wave nature of matter.

The fundamental principle of the wave nature of matter, as proposed by
De Broglie, is that the motion of a particle with mass m and velocity v is
dynamically equivalent to a propagating wave with velocity v and wavelength

λ = h/mv. (9.22)

De Broglie’s hypothesis suggested that the motion of an electron in an atom
be investigated using the formalism of wave mechanics as opposed to classical
mechanics. One characteristic of waves is that they constructively or destruc-
tively interfere with one another. Furthermore, if a single wave is bound, it can
interfere with itself.

These considerations lead directly to the Bohr condition for electrons in
bound orbits. A wave bound in a circular orbit will destructively interfere with
itself unless the circumference of the orbit is an integral number of wavelengths,
or nλ = 2πr. Given De Broglie’s hypothesis, following substitution for λ from
Eq. 9.22, we obtain mvr = mωr2 = nh̄, the consequence of Bohr’s first postulate
(Eq. 9.2). Any “orbit” not satisfying this condition will be destroyed by its own
wave motion.

9.2.1 The Schrödinger equation

With three degrees of freedom for the electron, the wave model yields a wide
variety of orbital configurations that satisfy the condition of constructive interef-
erence. The effect is that the radius and angular momentum of bound electrons
are quantized into discrete allowed stationary states. The single assumption of
the wave model of the atom is that the particles obey the laws of wave mechan-
ics, i.e., the particles are described by a wave function, Ψ(r, t) = Ψ(r,φ, θ, t),
which is the solution to a governing time–dependent wave equation. The form of
the wave equation that replaces the equation of classical mechanics for particles
was first derived by Schrödinger, and is called the Schrödinger equation,

ih̄
∂

∂t
Ψ(r, t) = HΨ(r, t), (9.23)

where the Hamiltonian is the energy operator

H = T + V = − h̄2

2µ
∇2 + V (r, t) (9.24)
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where T is the kinetic energy operator, V (r, t) is the potential specific to the
system under consideration, and µ is the reduced electon mass. Written out,
the Hamiltonian is

H = − h̄2

2µ

[

1

r2

∂

∂r

(

r2 ∂

∂r

)

− L2

h̄2r2

]

+ V (r, t), (9.25)

where L = r×p is the angular momentum with p being the instantaneous linear
momentum, and where L2 is the angular momentum operator

L2 = −h̄2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

. (9.26)

Note that r is the radial vector position at which Ψ(r, t) is evaluated, which in
spherical coordinates is given by the position r = (r,φ, θ).

The Hamiltonian expressed in Eqs. 9.25 and 9.26 yields the non–relativistic
energy and omits other dynamical and/or electromagnetic interaction terms that
arise from additional physical processes (such as between magnetic moments,
the binding electromagnetic field itself, the non–point charge distribution of the
nucleus, etc.). Such “pertubrations” will be discussed in Chapter 10.

The resulting form of the wave function depends on the exact form of the
potential, V (r, t). However, under the conditions that the wave function is single
valued, piece–wise smooth, and bounded, there are certain behaviors that are
key for deriving the stationary states and transition probabilities of the atom.

9.2.2 The wave function

Born postulated that the square of the wave function describing particles pro-
vided the probability of finding the particle within the volume element dV cen-
tered on a point at r at time t, or P (r, t) dV = |Ψ(r, t)|2 dV , where the volume
element is dV = r2drdΩ = r2dr sin θ dθ dφ. Thus, the probability density of the
particle position is

P (r, t) = Ψ∗(r, t)Ψ(r, t), (9.27)

where
∫ ∞

0

∮

Ψ∗(r, t)Ψ(r, t) dV = 1. (9.28)

For a time independent potential, V (r, t) = V (r), the Schrödinger equation
permits stationary state solutions, ψn(r), which take the form

Ψn(r, t) = ψn(r) exp {−i(En/h̄) t} , (9.29)

where ψn(r) satisfies the time independent Schrödinger equation

Hψn(r) =

[

− h̄2

2µ
∇2 + V (r)

]

ψn = Enψn(r). (9.30)

The form of Eq. 9.30 reflects the fact that for bound states, i.e., E < 0, only
certain value of En are compatible with normalizable solutions. For such cases,
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the En are known as energy eigenvalues and the wave functions ψn(r) are the
eigenfunctions of the Hamiltonian operator.

The En are real, whereas the ψn(r) can be complex for bound states, since
they exhibit spatial periodicity. The complex energy term,

exp {−iωnt} = cosωnt + i sinωnt, (9.31)

reflects the oscillation of the steady state with frequency ωn = En/h. That
is, ψn(r) is the wave function amplitude of the stationary state at r and this
amplitude oscillates at a frequency in proportion to the expectation energy of
the state. The spatial amplitudes are orthonormal,

∫ ∞

0

∮

ψ∗
n(r)ψn′(r) dV = δnn′ , (9.32)

where δnn′ is the Dirac δ–function

δnn′ =

{

1 n′ = n
0 n′ *= n.

(9.33)

9.2.3 Energies and time dependence

The expectation value, 〈a〉 of a given operator, A, is given by the integral over
all space 〈a〉 =

∫∮

Ψ∗(r, t)A Ψ(r, t) dV ; thus, the energy for eigenstate n in
Eq. 9.29 is obtained using the Hamiltonian operator

En = 〈H〉 =

∫ ∞

0

∮

ψ∗
n(r)H ψn(r) dV. (9.34)

Since the Schödinger equation is linear, the superposition principle applies,
so that the full time dependent solution can be written

Ψ(r, t) =
∑

n

cn(t)ψn(r) exp {−i(En/h̄) t} , (9.35)

where the cn(t) are time dependent coefficients each providing the amplitide of
the eigenstate n at time t. The energy at time t is

E(t) =

∫ ∞

0

∮

Ψ∗(r, t)H Ψ (r, t) dV. (9.36)

Thus, the state of a system at time t can be interpeted as a superposition of
stationary states in proportion to the values of cn(t); conversely, the state of
the system may be a single stationary state in state n′ provided cn′(t) = 1
and cn(t) = 0 for all n *= n′. It is also possible that Eq. 9.35 may represent
a transitioning between stationary states at some time t. For transitioning to
occur, i.e., time changes in the cn(t) coefficients, the Hamiltonian must have a
time dependence. It is common practice to solve for the cn(t) assuming a small
amplitude time dependent pertubation to the time independent Hamiltonian.
This is known as time–dependent pertubation theory.
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9.3 Bound stationary states

The simplest atoms are neutral hydrogen and hydrogen–like ions, which have a
single orbiting electron. As with the Bohr model, a Coulomb potential, V (r) =
−Ze2/r, is applied, where Ze is the charge of the nucleus. Substituting into
the time independent Schrödinger equation (Eq. 9.30) and manipulating via
separation of variables, terms can be combined such that the effective potential
is

Veff(r) = −V (r) +
l(l + 1)h̄2

2µr
, (9.37)

where l is the angular momentum quantum number (azimuthal degree of free-
dom).

For E ≥ 0, the effective potential yields a continuum of acceptable eigen-
functions (for which the eigenvalues can take on any value). We will treat the
continuum states in § 9.4 For E < 0, only certain acceptable eigenfunctions and
eigenvalues solve the Schödinger equation. As such, the wave function is forced
to have an integer number of nodes in the radial, and both the azimuthal and
polar coordinates. The eigenfunctions are of the form

ψnlm(r,φ, θ) = Rnl(r)Ylm(φ, θ), (9.38)

where Rnl(r) is the radial component, and where Ylm(φ, θ) is the spherical har-
monic function, which governs the azimuthal and polar modulations of Rnl(r).
As we shall see, the values of l and m are constrained by the periodic boundary
conditions and the requirement of constructive wave interference.

The principle quantum number is

n = nr + l + 1, (9.39)

where nr is the radial quantum number (recall the Bohr–Sommerfeld model).
Since nr = 0, 1, 2, ..., we see that the maximum angular momentum quantum
number for level n is the integer lmax = n− 1. Thus, the allowed values of l are
the integer values

l = 0, 1, 2, ..., n− 1. (9.40)

In terms of the elliptical orbits of Bohr–Sommerfeld, we have k = l+1, for which
lower values corresponded to higher eccentricity (lower angular momentum) for
a given n. The values of m are geometerically limited to the integers −l,−l+
1, ..., 0, ..., l−1, l.

The radial component

The full general expression for the radial component is,

Rnl(r) = −
[

(

2Z

aµ

)3 (n − l − 1)!

2n[(n + l)!]3

]1/2

ρl exp
{

−ρ

2

}

L2l+1
n+l (ρ) (9.41)
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where L2l+1
n+l (ρ) is the associated Laguerre polynomial,

L2l+1
n+1 (ρ) =

n−l−1
∑

k=0

(−1)k+1 [(n + l)!]2

(n − l − 1 − k)!(2l + 1 + k)!

ρk

k!
, (9.42)

and where

ρ =
2Z

naµ
r aµ =

h̄2

mec2

me

µ
= a0

me

µ
. (9.43)
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Figure 9.7: The radial component of the wave functions, Rnl(r) versus r/aµ for the first
three n levels.

The L2l+1
n+l (ρ) are equivalent to the confluent hypergeometric functions times

a multiplicative constant

L2l+1
n+1 (ρ) = − [(n + l)!]2

(n − l − 1)!(2l + 1)! 1F1(l + 1 − n, 2l + 2, ρ), (9.44)

where

1F1(a, c, z) =
∞
∑

k

(a)k

(c)k

zk

k!
= 1 +

a

c

z

1!
+

a(a + 1)

c(c + 1)

z2

2!
+ ... . (9.45)

Thus, we also have

Rnl(r) =
1

(2l + 1)!

{

[

2µ
Ze2

nh̄2

]3
(n + l)!

2n(n − l − 1)!

}1/2

×

ρl exp
{

−ρ

2

}

1F1(l + 1 − n, 2l + 2, ρ).

(9.46)
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The radial component to the wave functions for n = 1, 2, 3 are illustrated in
Figure 9.7. Note that the wave functions have an exponential decay for large
r (the functions are bounded). There are nr = n − l − 1 radial nodes, where
Rnl(r) = 0.

The azimuthal and polar components

The Ylm(φ, θ) account for the azimuthal and polar periodicity of the wave prop-
erties of the bound electron (the constructive interference). The spherical har-
momic functions are written

Ylm(φ, θ) = Θlm(θ)Φm(φ), (9.47)

where the azimuthal component is

Φm(φ) =
1√
2π

exp {imφ} =
1√
2π

[cosφ + i sinφ] . (9.48)

0

1l = m = 01l = m = −1 1l = 

0

+1m = 

l = m = 

x

x x x

y

yy y

z

zz z

Figure 9.8: The spherical harmonics (based upon the real form) for l = 0 (top panel) and
l = 1 for m = −1, 0, +1 (lower panel right to left).

To be single valued, the functions must obey Φm(2π) = Φm(0), which re-
stricts m to integer values, m = 0,±1,±2,±3, ... (this is the constructive inter-
ference condition following from the De Broglie hypothesis). The polar compo-
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nent is

Θlm(θ) =











(−1)m

[

(2l + 1)(l − m)!

2(l + m)!

]1/2

Pm
l (cos θ) m ≥ 0

(−1)|m|Θl|m|(θ) m < 0

(9.49)

where Pm
l (cos θ) are the associated Legendre polynomials. Written in full, the

spherical harmonics are

Ylm(φ, θ) =











(−1)m

[

(2l + 1)(l − m)!

4π(l + m)!

]1/2

Pm
l (cos θ) exp {imφ} m ≥ 0

(−1)mY ∗
lm(φ, θ) m < 0

(9.50)
which obey the orthonomal property

∮

Y ∗
l′m′(φ, θ)Ylm(φ, θ) dΩ = δll′δmm′ (9.51)

The azimuthal component, Φm(φ), modulates the amplitude of the wave
function in rotation about the z axis. Written in real variables, it is customary
to define Φm(0) = 1 for m > 0 and Φm(0) = 0 for m < 0. The polar component,
Θlm(θ), modulates the amplitude of the wave function in proportion of the angle
between the radial vector and the +z axis. In locations where the Ylm(φ, θ) have
nodes (zero value), the wave function is vanished. Examples of the l = 0 and
the l = 1, m = −1, 0, +1 cases are illustrated in Figure 9.8.

9.3.1 Wave functions

The closed expressions for the wave functions, ψnlm(r,φ, θ), for n = 1, 2, 3 are
tabulated in Eq 9.52, where we have defined ξ = Z/aµ. The radial functions are
modulated by the Ylm(φ, θ), which is to say that the amplitude of the Rnl(r)
vary with the azimuthal and polar angle coordinate. For l = 0 the amplitudes
are independent of polar coordinate θ, and for m = 0 the amplitudes are inde-
pendent of azimuthal coordinate φ. Thus, ψn00(r,φ, θ) = Rn0(r).

A null angular momentum, l = 0, should not be interpreted as a radial orbit,
but as a lack of angular momentum in the wave function itself (no rotation about
the origin). With no rotation of the waves, there is no azimuthal interference
pattern and therefore no nodes in the azimuthal coordinate. If the wave has
angular momentum, then an integer number of azimuthal nodes result from
the periodic boundary condition because the wave must constructively interfere
with itself to establish a stationary state.

As l increases, the z component to the angular momentum must also obeys
the principle of constructive intereference, resulting in nodes along the direction
of the polar angle (this is also called space quantization). The polar nodes
are constants of rotation about the azimuthal coordinate (if there is a node at
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ψ100(r,φ, θ) =
1√
π
ξ3/2 exp{−ξr}

ψ200(r,φ, θ) =
1

2
√

2π
ξ3/2(1 − ξr/2) exp{−ξr/2}

ψ210(r,φ, θ) =
1

4
√

2π
ξ3/2(ξr) exp{−ξr/2} cos θ

ψ21±1(r,φ, θ) =
±1

8
√
π
ξ3/2(ξr) exp{−ξr/2} sin θ exp{±iφ}

ψ300(r,φ, θ) =
1

3
√

3π
ξ3/2(1 − 2ξr/3 + 2ξ2r2/27) exp{−ξr/3}

ψ310(r,φ, θ) =
2
√

2

27
√
π
ξ3/2(ξr)(1 − ξr/6) exp{−ξr/3} cosθ

ψ31±1(r,φ, θ) =
±2

27
√
π
ξ3/2(ξr)(1 − ξr/6) exp{−ξr/3} sin θ exp{±iφ}

ψ320(r,φ, θ) =
1

81
√

6π
ξ3/2(ξr)2 exp{−ξr/3}(3 cos2 θ − 1)

ψ32±1(r,φ, θ) =
±1

81
√
π
ξ3/2(ξr)2 exp{−ξr/3} sin θ cos θ exp{±iφ}

ψ32±2(r,φ, θ) =
1

162
√
π
ξ3/2(ξr)2 exp{−ξr/3} sin2 θ exp{±2iφ}

(9.52)

θ = π/4, for example, the node sweeps out the full 2π in the rotation about the
z axis).

The total number of nodes (radial + azimuthal + polar) of the wave function
is n − 1. We see that the principle quantum number takes on a geometric
significance based upon the spatial constraints that govern wave interference
patterns.

9.3.2 Angular momentum and wave functions nodes

For the wave model of the atom, we have obtained three integral numbers that
characterize the functional form of the quantized stationary states of the elec-
tron. These quantum numbers are the principle quantum number n, the angular
momentum quantum number, l, and the magnetic quantum number, m. These
numbers reflect the three spatial degrees of freedom in which the wave function
describing the electron is bound. Recall, the wave function is the solution for
which the waves are constructively interfering, and therefore must have integer
number of nodes in each degree of freedom. The principle, angular momentum,
and magnetic quantum numbers are summarized in Table 9.2.
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Table 9.2: Quantum numbers

Description Allowed Values Possibilites

n principle 1 ≤ n ≤ ∞ infinite
l angular momentum 0 ≤ l ≤ n − 1 n

m magnetic −l ≤ m ≤ l 2l + 1

Whereas the constant of motion for the Bohr model is the azimuthal orbital
angular moment (for the non–relativistic Bohr–Sommerfeld model it is the sum
of the azimuthal angular momentum and the radial component), the constants
of motion for the Schrödinger wave model are the total angular momentum and
the azimuthal (z compnonent) angular momentum. The angular momentum is
a vector, L, for which the magnitude is

|L| = (L2
x + L2

y + L2
z)

1/2 =
√

l(l + 1) h̄

Lz = mh̄,
(9.53)

where Lz is the azimuthal or z component in cartesian coordinates. The angular
momentum vector and its z projection are illustrated in Figure 9.9a for l = 1
and Figure 9.9b for l = 2. The vector processes about the z axis, as shown in
Figure 9.9c, has length

√

l(l + 1) in units of h̄. It can reside in any one of 2l +1
projections on the z axis with magnitude m in units of h̄. For l = 1, the length
is
√

2 h̄ and the possible projections are −h̄, 0, +h̄; for l = 2, the length is
√

6 h̄
and the possible projections are −2h̄,−h̄, 0, +h̄, +2h̄.

The amplitude of ψnlm(r,φ, θ) is quantized in the radial direction according
to the radial quantum number nr, where nr = 0, 1, 2, .... The relation between n
and nr is n = nr + l+1, indicating that the principle levels are a coupling of the
radial and angular momentum quantization. That is, the radial quantization
is a direct result of the angular boundary conditions constraining the angular
momentum of the waves. This is why the radial component of the wave function,
Rnl(r), depends upon both n and l.

In principle level n, the number of polar nodes can range from zero (no node)
to n − 1 nodes; thus, the angular momentum quantum number l can take on
the values 0, 1, 2, ..., n − 1 (a total of n possibilities). This is a consequence of
the angular boundary condition 0 ≤ θ ≤ π to the x and y components of the
angular momentum. As l increases for a given n, the number of nodes, m, in the
azimuthal angular direction are allowed to increase (following the principles of
harmonic functions), taking on 2l+1 values ranging over −l,−l+1, ..., 0, ..., l−1, l.
The quantum number m is a consequence of the angular boundary condition
0 ≤ φ ≤ 2π to the z component of the angular momentum.

The total number of stationary states that an electron can occupy for a given
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Figure 9.9: A schematic of the angular momentum vector, L, and the z projection, Lz .
These two quantities are the constants of motion for the wave model of the atoms. (a)
The confinguration for l = 1, with m = −1, 0, +1. (b) The configuration for l = 2, with
m = −2,−1, 0, +1,+2. (c) The precession of L around the z axis for l = 1, m = +1/2.

principle level n is represented by gn, the multiplicity of states,

gn =
n−1
∑

l=0

(2l + 1) = n2. (9.54)

A schematic of the allowed quantum numbers for n = 1, 2, 3 is presented in
Figure 9.10.
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Figure 9.10: A schematic chart of the allowed quantum numbers, nlm, based upon the
spatial boundary conditions and wave interference properties of orbiting electrons.

Spectroscopic notation

Each n level is called a shell, and historically, observational spectroscopists
named the n = 1 level the K shell, the n = 2 level the L shell, etc. The
various angular momentum states, l, were given the spectroscopic notation, “s”
for l = 0, “p” for l = 1, ”d” for l = 2, and “f” for l = 3. These stand for
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“sharp”, “principle”, “diffuse”, and “fundamental”. The spectroscopic notation
for the various shells and l states are listed in Table 9.3.

Table 9.3: Spectroscopic notation

Principle Angular Momentum

n Shell l Notation

1 K 0 s sharp
2 L 1 p principle
3 M 2 d diffuse
4 N 3 f fundamental
5 O 4 g
6 P 5 h

As an example of the application of the above notation, the stationary state
n = 1 with l = 0 resides in the K shell and the wave function and state are
denoted “1s”. For n = 2 and l = 1, the electron resides in the L shell and the
wave function and state are denoted “2p”. As an exmple, there is only a single
1s state (m = 0) and there are three 2p states (m = −1, 0, +1).

9.3.3 Probability density

The interpretation of the wave function rests with Born’s postulate, as expressed
in Eq. 9.27. Born’s postulate is that the meaning of the wave function, as applied
to particles, is probabilistic; the amplitude of the wave function squared provides
the probability of finding the particle in a volume element centered at r = r,φ, θ.
Thus

P (r,φ, θ) dV = |ψnlm(r,φ, θ)|2 dV = ψ∗
nlm(r,φ, θ)ψnlm(r,φ, θ) r2drdΩ (9.55)

is interpreted as the probability of finding the electon in the stationary state
nlm at r in the volume element dV = r2drdΩ = r2dr sin θ dθ dφ. The function
P (r,φ, θ) = |ψnlm(r,φ, θ)|2 is often called the probability density or the charge
density.

Based upon the wave nature of matter, the electron stationary state is not
viewed as a mechanical orbit. The stationary state is a wave amplitude for
which the spatial probability distribution of the location of a bound electron is
the time independent square of this amplitude. Employing a classical view, in a
stationary state, the electron can be thought of being a bound kinetic particle
moving in a region of space around the atomic nucleus with a stochastic motion
such that particle spends greater amounts of time where P (r,φ, θ) is peaked and
no time where P (r,φ, θ) = 0. However, this is a very erroneous visualization,
for an accelerating charge must radiate and lose energy, whereas the electron, as
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a stationary wave pattern (albeit with an amplitude that varies with frequency
ωn = En/h) does not.
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Figure 9.11: The radial component to the charge density, |Rnl(r)|2, is plotted as dashed
curves for atomic hydrogen for various selected nl states. Plotted as solid curves is the radial
distribution function, Dnl(r), which provides the probability of finding the electron in state
nl at radial distance r per unit dr. The vertical scales are arbitrary.

Integrating the probability density over all solid angle (the azimuthal and
polar coordinates), we have

Dnl(r) dr = r2 |Rnl(r)|2 dr

∮

|Ylm|2(φ, θ) dΩ = r2 |Rnl(r)|2 dr, (9.56)

where the final step follows from the orthonormal properties of the spherical
harmonic functions (Eq. 9.51). The quantity Dnl(r) provides the probability
that the electron will be found a distance r from the nucleus per unit dr; it is
called the radial distribution function. In Figure 9.11, the radial component to
the charge density, |Rnl(r)|2, and the radial distribution function, Dnl(r), are
plotted for selected nl states for n = 1, 2, and 3.

As discussed in § 9.3 and illustrated in Figure 9.8, the function Θlm(θ)
modulates the amplitude of P (r,φ, θ) with polar angle and the function Φm(φ)
modulates the amplitude with azimuthal angle about the z axis. For l = 0
there is no modulation, but for l = 1, m = 0 the nodes of ψnml(r,φ, θ) occur at
θ = π/2 (the xy plane) and the amplitude maximima occur at θ = 0,π and are
thus aligned with the polar axis (+z and −z). For l = 1, m = ±1, the nodes
occur at θ = 0,π and the maxima at φ = 0,π (+x,−x) for m = +1 and at
φ = ±π/2 (+y,−y) for m = −1.
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Figure 9.12: Intensity diagrams of the probability density functions of the first three prin-
ciple quantum states are illustrated for the allowed l states and m = 0. The inset provides
the geometric viewing angle. The s states are spherically symmetric. The p states have three
possible orientations depending upon m. The m = ±1 p states are rotated by θ = π/2 with
orthogonal x–y orientations for m = −1 and m = +1, The d states have five possible orien-
tations of rotation. (images created by Paul Nylander, http://www.bugman123.com; used by
permission)

The probability density functions for the first three principle shells of neu-
tral hydrogen, as viewed from the positive y axis (xz plane), are presented in
Figure 9.12. Only m = 0 states for mln 100 (1s), 200 (2s), 300 (3s) 210 (2p),
310 (3p), and 320 (3d) are shown. Based upon the behavior of the spherical
harmonic component to the wave function, the m = ±1 states for 2p yield prob-
ability density functions rotated into the xy plane (nodes in the ±z direction)
with azimthal rotation (peak amplitude in the ±x direction for l = +1 and peak
amplitude in the ±y direction for l = −1; refer to Figure 9.8). We note that
the direction of the axes is an arbitrary construct. Similar rotations apply for
the 3p states.

These functions illustrate that the view of an electron as an orbiting particle
must be abandoned in favor of the view that the charge density of the electron
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is distributed spatially in proportion to the square of the wave function. This
is the wave mechanics interpretation of the stationary bound state.

9.3.4 Energy structure and spectra

The eigenenergies of the stationary states, ψnjmj (r), obtained via Eq. 9.34, are
identical to those of the Bohr model, namely

En = −µe4

2h̄2

Z2

n2
= −RZ

n2
. (9.57)

for an electron with principle quantum number n bound to a hydrogen–like atom
with nuclear charge Ze. For the non–relativistic Schrödinger model, there are
gn = n2 multiplicity of states for level n with equal energy (when we introduce
the electron spin, this multiplicity is doubled).

Consequently, the non–relativistic wave mechanics approach to describing
the bound stationary states of electrons in the hydrogen atom yields the same
transitions and spectral features (§ 9.1.3) and the same energy structure (§ 9.1.4)
as the non–relativistic Bohr model of the atom. However, we note that the
physical interpretations of the energy states and transitions are very different
for the wave model of the atom as compared to the Bohr model (we will explore
this in subsequent discussion).

9.4 Continuum states

n = −i
Z

k
(9.58)

is imaginary. k can take on any value for k ≥ 0.

Rnl(r) =
2Z1/2(2kr)l exp{−ikr}

(2l+1)!
√

1−exp{−2πn}
F (in+l+1, 2l+1, 2ikr)

l
∏

s=1

√

s2 + l2 (9.59)
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Chapter 10

Finer structure

Relativistic corrections, electron spin, and the Dirac Hamiltonian are then intro-
duced, following which the fine–structure stationary states are presented. Most
of what is needed to be known for ultraviolet and optical spectroscopy is a re-
sult of the Dirac theory. However, we explore higher–order modifications to the
energy states, including the Lamb shift (due to radiative corrections), hyperfine
structure, and isotope shifts.

10.1 Spin

There is an additional quantized state of the electron, called spin, that is not
spatial in nature, but does behave as an additional component to the angular
momentum. In 1922, the Stern–Gerlach experiment yielded the unexpected
result that silver atoms beamed through a magnetic field were deflected into
two discrete beams (they were predicting only a single deflection, if any, in
proportion to the magnetic moment of the atom). In 1925, Gouldsmit and
Uhlenbeck showed that when atoms are placed in a magnetic field, the spectral
lines split in proportion to the field strength (the Zeeman effect).

These results are consisent with the notion that the electron has an intrinisic
magnetic moment that is proportional to an intrinisc angular momentum, or
spin, of the electron itself. The above experiments are explained if the spin has
multiplicity of states gs = 2s + 1 with s = 1/2. Thus, gs = 2; there are two
spin states. The result is that the total magnetic moment of the atom is due to
the combined magnetic moment of the electron orbit and the intrinisc magnetic
moment of the electron. Thus, we introduce two additional quantum numbers,
s = 1/2 and ms = ±1/2, and the spin wave function, denoted χms (which obeys
all orthonormal properties).

A schematic of the electron spin vector and its precession is illustrated in

203

c© Chris Churchill (cwc@nmsu.edu) Use by permission only; Draft Version – February 15, 2010



204 CHAPTER 10. FINER STRUCTURE
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Figure 10.1: (a) The spin vector has magnitude
p

3/4 h̄ and precesses about the z axis with
projection msh̄, where ms = ±1/2. (b) Schematic of the S vector precession for the spin “up”
state.

Figure 10.1. Similar to the orbital angular momentum, L = r × p, which has
magnitude L =

√

l(l + 1) h̄ with z component Lz = mlh̄, the electron spin, S,

has magnitude S =
√

s(s + 1) h̄ =
√

3/4 h̄ with z component magnitude Sz =
msh̄ = ±(1/2)h̄. Spin is mathematically equivalent to an angular momentum
of the electron itself.

The wave equation for state nlmlms is simply given by

ψnlmlms(r) = Rnl(r)Ylml (φ, θ)χms . (10.1)

When ms = +1/2, the function χ+1/2 is refered to as a spin “up” state, and
when ms = −1/2, the function χ−1/2 is refered to as a spin “down” state. For
clarification, the quantum number representing the z component of the oribital
angular momentum is hereafter written ml.

10.2 Spin–Orbit coupling

The orbital angular momentum and the spin combine such that the z component
of the orbital angular momentum, Lz, no longer retains its status as a contant
of motion. The new constants of motion are the total angular momentum of
the electron, J, which is the combination of the orbital and intrinisc angular
momenta, i.e., the result of spin–orbit coupling,

J = L + S. (10.2)

and the z component of J, i.e., Jz. The magnitude of J is J =
√

j(j + 1) h̄,
where the total angular momentum quantum number is given by

j =

{

s l = 0
l ± s l ≥ 1,

(10.3)
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10.2. SPIN–ORBIT COUPLING 205

where s = 1/2, and where the z component is in multiples Jz = mj h̄, with

mj = ml + ms = −j,−j + 1, ..., j − 1, j. (10.4)

Since l takes on n possible integer values from l = 0 to n−1, we see that j takes
on n possible values, j = 1/2, 3/2, ..., n − 1/2. Note that for a single electron,
j *= l and mj must always be a half integer.

Because the constants of motion are now the orbitsal angular momentum,
L, the total angular momentum, J, the z axis projection of the total angular
momentum, Jz , and the z, wave functions are stationary states of these quan-
tities, which are represented by the quantum numbers l, j, and mj. The wave
functions are written ψnljmj (r). A common method is to compute the wave
function as the linear superposition of the Schrödinger stationary states, nlml,
and the spin wave functions with stationary state ms stationary states,

ψnljmj (r) =
∑

mlms

αnljmj
ms

Rnl(r)Ylml (φ, θ)χms . (10.5)

where the sum is over all ml and ms states for a given nl, and where α
nljmj
ms are

known as the Clebsch–Gordon coefficients, which we do not discuss further.

3/4
15/4

jm jm
(b)

−1/2

−1

0

1/2

3/2

−1/2

(a)

3/2

0

L

S

J
1/2

1

1

2

Figure 10.2: (a) The total angular momentum vector, J, as the vector sum of L and S.
For this example, l = 1 leading to j = 3/2 and mj = +3/2. The new constant of motion,
J, precesses azimuthally about the z axis with projection mj , whereas L precesses about J.
Note that the projection of L on the z axis, Lz , is no longer a constant of motion; however
S and ms remain constants of motion. (b) Schematic of the vector addition emphasizing
the magnitudes of the vectors. The total angular momentum, J, is represented by the thick
line with the solid arrow and has magnitude

p

j(j + 1) h̄ =
p

15/4 h̄. The orbital angular
momentum and electron spin are shown as thin lines with open arrows, where the magnitude
of the angular momentum is

p

l(l + 1) h̄ =
√

2 h̄ and the magnitude of the spin is
p

3/4 h̄, as
always. The possible projections of J on the z axis are mj = −3/2,−1/2, +1/2, +3/2. Only
the mj = +3/2 case is illustrated.

The spin–orbit coupling (vector addition) rules, given by Eqs. 10.3 and 10.4,
are schematically illustrated in Figure 10.2a for the state l = 1 and spin states
resulting in j = 3/2 and mj = +3/2. The vector J precesses about the z axis in
one of 2j+1 = 4 possible projections mj h̄, where mj = −3/2,−1/2, +1/2, +3/2.
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Only the mj = +3/2 case is illustrated. The L vector precesses about the J

vector, such that its z component, Lz, is no longer a constant of motion. The
spin, S, adds to L, but with only two possible z axis projections msh̄, where
ms = −1/2, +1/2.

The magnitudes of the J, L, and S vectors are illustrated Figure 10.2b.
For l = 1, the magnitude of the orbital angular momentum is

√

l(l + 1) h̄ =√
2 h̄. The magnitude of the total angular momentum (illustrated as thick lines

with solid arrow), is
√

j(j + 1) h̄ =
√

15/4 h̄. There are four possible z axis
projections mj = −3/2,−1/2, +1/2, +3/2, though only that latter is shown for
clarity. The spin is also represented as a thin line with an open arrow, but
originating at the head of the angular momentum vector. Not illustrated is that
for l = 1, the state j = 1/2 is also possible.

l   s
=0

l >0

−5/2

−3/2

−1/2

+1/2

−3/2

−1/2

+1/2

+3/2 +5/2

+3/2
z−axis
projection

m j −j,−j+1,...,+j

l 0,1,2,...,
orbital
angular
momentum

total
angular
momentum

j { 1/2

n−1

−1/2

+1/2

−1/2

+1/2

−3/2

−1/2

+1/2
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1/2 1/2 3/2 3/2 5/2

0 21

+−

l

Figure 10.3: A schematic chart, analgous to Figure 9.10, of the total angular momentum
quantum numbers, j, and z projection, mj , for the l = 0, 1, 2 states per the coupling of ml

and ms. When spin–orbit coupling is accounted, the number of states for level n are doubled,
so that gn = 2n2.

In Figure 10.3, the resulting quantum states for the total angular momentum
are illustrated for spin–orbit coupling for l = 1, 2, 3. The two spin states of the
electron doubles the number of allowed stationary states for a given principle
level n, which doubles the multiplicity of states (see Eq. 9.54) from n2 to

gn =
n−1
∑

l=0

gs(2l + 1) = 2n2. (10.6)

10.3 Relativistic hydrogen model

In § 9.1.6, it was illustrated that Sommerfeld’s inclusion of relativistic effects and
various angular momentum states yielded Bohr energies either slightly shifted
and/or split by minute amounts depending on the quantum number k, i.e., the
angular momentum of allowed elliptical orbits for level n.

In the previous section, we illustrated how, for a radially symmetric time–
invariant Coulomb potential, the eigenfunctions to the Schödinger wave equation
result from spatial quantization (due to periodic azimuthal and polar boundary
conditions), and that these quantized stationary states are identified by the
three quantum numbers nlml. Having no counterpart in the Bohr model, spin
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quantization of the electron yields the additional angular momentum component
denoted by s and ms. The coupling of spin–orbit angular momenta resulted in
a superposition of ms and ml states for the overall nlmlms states to form j and
mj states denoted nljmj.

The non–relativistic Hamiltonian (see Eqs. 9.25 and 9.26) does not oper-
ate on the spin (or magnetic moment of the electron), and therefore, yields
energy expectation values independent of spin–orbit coupling. Including spin,
the energies are 2n2 degenerate. If the Hamiltonian is constructed to yield the
relativistic energy and provides for electron spin, then the energy degeneracy
for several of the states in a given principle level n is broken.

Since the interaction energies due to relativistic and spin–orbit effects are
tiny fractions of the En, it is common to use pertubation theory. The approach
involves writing the Hamiltonian with small magnitude low–order correction
terms. The form of the Hamiltonian with relativistic corrections to order v2/c2

is

H =
p2

2µ
+ V (r) − p4

8µ3c2
+

1

2µ2c2

1

r2

dV

dr
L·S +

h̄2

8µ2c2
∇2V (r). (10.7)

The first two terms are the classical Hamiltonian. The third term is a relativistic
correction to the energy. The fourth term is the spin–orbit interaction energy for
l ≥ 1 electrons, which includes a relativistic correction to the electromagentic
potential. The final term is a correction called the Darwin term for l = 0
electrons (due to a “zwitterbewegung”, a jittering precession of the electron spin
due to interaction of the angular momentum of the photon field transporting
the attractive force of nuclear electromagnetic potential and the electron spin).

10.4 Fine structure

For the hydrogen atom, the three energy corrections obtained from the second
order correction terms in the Hamiltonian (1) relativistic energy, (2) spin–orbit
coupling, and (3) the Darwin term, are of roughly equal magnitude. However,
for multi–electron atoms, the spin–orbit term dominates.

The sum results of these corrections terms is that the energy levels have a
weak dependence on the j state. This results in small shifts and splittings in
the Schrödinger energy states. Fine structure is the term invoked to describe
these small energy splittings of otherwise energy degenerate stationary states.

10.4.1 Dirac energies

The resulting energy corrections are obtained employing Eq. 9.34. The rela-
tivistic energy correction, for example, is given by

∆E1 =

∫ ∞

0

∮

ψ∗
nljmj

(r)

[

− p4

8µ3c2

]

ψnljmj
(r) dV (10.8)

c© Chris Churchill (cwc@nmsu.edu) Use by permission only; Draft Version – February 15, 2010



208 CHAPTER 10. FINER STRUCTURE

The correction is applied by adding ∆E to En (Eq. 9.57). The other correction
terms to the energy are similarly computed and added. We note that the mean
value of the spin–orbit term L·S is

〈L·S〉 = 〈J·J− L·L − S·S〉 =
h̄

2
[j(j + 1) − l(l + 1) − s(s + 1)] , (10.9)

which is instrumental in computing the spin–orbit contribution, ∆E2, to the
energy correction following insertion into Eq. 9.34. We have

∆E1

En
= − (Zα)2

n2

[

3

4
− n

l + 1/2

]

,

∆E2

En
= − (Zα)2

n

[

j(j + 1) − l(l + 1) − s(s + 1)

2l(l + 1/2)(l + 1)

]

l *= 0,

∆E3

En
= − (Zα)2

n
l = 0,

(10.10)

where the total energy correction is ∆E/En = (∆E1 + ∆E2 + ∆E3)/En.
Following the addition of the three correction terms, the energy for an elec-

tron in state nj can be expressed

Enj = En (1 + ∆Enj) = En

[

1 +
(Zα)2

n2

(

n

j+1/2
− 3

4

)]

, (10.11)

where En is given by Eq. 9.57, and α = e2/h̄c is the fine structure constant.
Since there are 2j+1 possible projections for mj , the Enj are 2j+1 degenerate.
The form of Eq. 10.11 clearly shows that the energy shifts and splittings scale in
direct proportion to α2 and inversely proportional to n2. The resulting energy
splittings are very small relative to En (thus the name fine structure).

The exact solution was obtained by Dirac using the so–called Dirac equation
based upon full treatment of relativistic energies, electron spin, and interaction
of the electron and nuclear magnetic moments as applied to the wave equation.
The treatment is well beyond the scope of this text. Dirac’s result is

Enj = µc2







[

1 +

[

Zα

n− (j−1/2) + [(j+1/2)2 − (Zα)2]1/2

]2
]−1/2

− 1







,

(10.12)
which is equivalent to Eq. 10.11 to order (Zα)2. For an infinite mass nucleus,
the reduced mass of the electron is replaced with the rest mass, me.

10.4.2 Energy splittings

Since j takes on n possible values, the Dirac theory predicts n energy splittings
for level n. Each set of splittings at level n form what is known as a fine structure

c© Chris Churchill (cwc@nmsu.edu) Use by permission only; Draft Version – February 15, 2010



10.4. FINE STRUCTURE 209

multiplet. The fine structure constant, α, provides the scale of the multiplet
energy splitting.

In Figure 10.4 , the quantity α−2∆Enj/En from Eq. 10.11 is schematically
illustrated for n = 1, 2, 3 for the hydrogen atom. We have invoked the spectro-
scopic notation listed in Table 9.3, i.e., the n = 2, l = 1 state is written 2p, etc.,
with the added convention of including the subscript j to denote the spin–orbit
coupling, or total angular momentum state. Thus, the n = 2, l = 0, j = 1/2
state is written 2p1/2, etc.

n

1

2s
1/2

2p
1/2

l = 0, j = 1/2

n = 2

2p
1/2

(1,1/2)

1s
1/2

3s
1/2

3p
1/2

(0,1/2) (1,1/2)

3p
3/2

3d
3/2

3d
5/2

n = 3

α−2

−0.0625

−0.2500
(0,1/2)

(1,3/2)

−0.0278

(0,1/2)

−0.2500

−0.0834 −0.0556
−0.1667

(1,3/2) (2,3/2)
(2,5/2)

−0.3125

−0.2500

Quantum StatesE /  Δ E

n =

Figure 10.4: The hydrogen fine structure energy shifts, α−2∆Enj/En, for the first three
principle levels n = 1, 2, 3. The quantum states are identified using spectroscopic notation.
The energy differences between fine structure states are illustrated in the center schematic,
whereas the absolute shifts relative to the Shrödinger energies are illustrated on the left.

The result of relativistic spin–orbit coupling is that binding energy of the
electron is increased (the energy is more negative) relative to the non–relativistic
Shrödinger treatment. Because several of the stationary states remain energy
degenerate, there are only n fine structure multiplets for level n. In reality,
these energies are not degenerate when higher–order physics is taken into ac-
count (see § 10.5). The fine structure splitting is a completely different physical
phenomenon than the splittings proposed by Sommerfeld in the Bohr model
(which are not in agreement with observations, see Figure 9.5).

10.4.3 Spectral multiplets

Spectral features are due to the emission or absorption of electromagnetic energy
accompanied by the electron transitioning from one stationary state to another.
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The photon wavelength is
hc

λ
= Enj − En′j′ , (10.13)

where the energies are given by Eq. 10.11 or 10.12 for states n′j′ and nj. Given
the fine structure mutliplets dictated by Eq. 10.12, it is clear that the transition
energies will cluster in multiplets as well. The spectral lines that result from
transitions between fine structure multiplets associated with states nl and n′l′

are simply called “a multiplet” (of spectral lines).
The strongest transitions (those with the highest probability of taking place),

obey the selection rule

∆l = ±1. (10.14)

If a spin flip does not occur, we have ∆j = ±1. If a spin flip occurs we obtain
∆j = 0. Thus, the addtional selection rule is

∆j = 0,±1. (10.15)

These selection rules are derived from the so–called dipole approximation (we
will be discussing this in subsequent sections). Transitions obeying these se-
lection rules are called “permitted” transitions. Less probable transitions, for
which ∆l *= ±1 are understood in terms of the quadrapole approximation; they
are known as “forbidden” transitions. There are no restriction on the principle
qauntum number, so that ∆n can take on any value, including ∆n = 0.

In Figure 10.5, the permitted transitions for hydrogen Lyα and Hα are
illustrated. As also illustrated in Figure 10.4, there is only a single 1s state with
j = 1/2 (though its energy is shifted relative to the Schrödinger energy). There
are three fine structure states for n = 2, but the 2s1/2 and 2p1/2 states are energy
degenerate (we will see that this degeneracy is broken when we introduce an
additional energy correction called the Lamb shift). According to the selection
rules, a 2s1/2–1s1/2 transition is forbidden, since it would require ∆l = 0. Since
the path for an electron in the 2s1/2 state to transition to the 1s1/2 state is
forbidden, and 1s1/2 is the only n = 1 state, the 2s1/2 state is “metastable”.
Both the 2p3/2–1s1/2 and the 2p1/2–1s1/2 transitions are permitted with ∆l =
±1 and ∆j = ±1 and 0, respectively. Thus, the fine structure Lyα spectral
feature is a doublet.

Similar discussion applies to the Hα transition, which can occur as any
one of seven transitions. Note that the transition 3d5/2–2p1/2 is forbidden,
because it would require ∆j = ±2, even though ∆l = ±1 would otherwise be
allowed. Also note that the two transitions 3p3/2–2s1/2 and 3d3/2–1p1/2 have
equal energy. Thus, the Dirac theory predicts that observed spectra will show
only five unque features in the Hα multiplet.

Applying the selection rules, in the Dirac theory the Lyman series spectral
features are all doublets due to the transitions np1/2–1s1/2 and np3/2–1s1/2,
where n = 2 is Lyα, n = 3 is Lyβ, etc. Each Balmer series spectral feature
is a five fold multiplet based upon a seven fold branching of the multiplets at
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Figure 10.5: The Lyα doublet (2p3/2–1s1/2 and 2p1/2–1s1/2) and Hα multiplet. These
fine structure multiplets arise from the relativistic treatment and spin–orbit coupling. The
selection rules are ∆l = ±1 and ∆j = 0,±1 for permitted transitions. The downward arrows
would indicate emission, though the corresponding absorption transitions are also a possibility
in the presence of a photon field. Not illustrated is the permitted Lyβ doublet (3p3/2–1s1/2

and 3p1/2–1s1/2) Also not illustrated is the allowed 2p3/2–2s1/2, for which ∆n = 0.

general level n and the n = 2 multiplets,

np3/2−2s1/2 nd3/2−2p1/2 nd5/2−2p3/2

np1/2−2s1/2 ns1/2−2p1/2 nd3/2−2p3/2

ns1/2−2p3/2.

Note that fine structure energy splittings decrease with increasing n such that
spectral feature multiplets from a high n to a much lower n (except to n = 1) are
dominated by the low n fine structure. The transitions between fine structure
multiplets do not have equal probability of occuring. Thus, the observed spectral
mutliplets have different intensities. Transition rates and probabilities will be
considered in detail in Chapter 11.

10.5 Higher order corrections

For astronomical ultraviolet and optical atomic spectroscopy, as with all obser-
vational sciences, the level at which the atomic physics must be considered is
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a function of the application (the science goals). For a large majority of astro-
nomical applications, fine structure provides a sufficient accuracy to the energy
corrections. Fine structure is the theoretical formalism by which the very com-
monly observed doublet and multiplet spectral features can be exploited for the
astronomical sciences. For most applications discussed in this book, knowledge
of higher order energy corrections is not required. However, for completeness,
we briefly discuss a few additional physical effects. The main higher order cor-
rections are

• The Lamb shift, also known as radiative corrections
• Hyperfine shifts and splittings, also known as hyperfine structure
• Isotope shifts, also known as the mass polarization correction

10.5.1 Radiative corrections

Based upon the treatment of Dirac, in cases where l = 0, the energy levels are
shifted with respect to the Schrödinger energies, and in the cases where l ≥ 1,
both shifts and fine structure energy splittings result. However, in cases where
l′− 1/2 = l + 1/2, where l′ = l + 1, the energy shifts away from the Schrödinger
levels are identical; Dirac theory predicts that the two states have equal energy.
Historically important examples are the 2s1/2 and the 2p1/2 states, which are
energy degererate in the Dirac theory (as illustrated in Figures 10.4 and 10.5).

Early experimental tests of the Dirac energies suggested (inconclusively)
that the 2s1/2 state has slightly higher energy (is less bound) than the 2p1/2

state. Since the selection rules for permitted transitions place no limits on ∆n,
transitions for which ∆n = 0 are not dissallowed. In 1947, Lamb and Retherford
devised a well–designed experiment in which they conclusively demonstrated
that transition frequency between the 2s1/2 and 2p1/2 state is roughly 1000
[MHz]. The currently accepted value is 4.3 × 10−6 [eV] corresponding to a
photon wavelength of 28.34 [cm] and a frequency of 1057.77 [MHz]. This energy
difference corresponds to roughly 10% of the fine structure shift in the 2s1/2

state, and has been named the Lamb shift.
The quest to explain the Lamb shift facilitated the development of the theory

of quantum electrodynamics, which takes into account the quantized nature of
the electromagentic field binding the electron in the atom. The mathematical
formalism of the theory is beyond the scope of this book. Conceptually, the
quantum electrodynamic treatment of the binding force acting on the electron
is that the force is carried by virtual photons and that this quantized radiation
field can fluctuate in energy so that it has a non–zero lowest energy state.
Consistent with the Heisenberg uncertainty principle, this fluctuating energy
within the virtual field can change forms as long as energy and momentum are
conserved.

Schematics of the quantized radiative interactions (known as Feynman dia-
grams) are illustrated in Figure 10.6. Time moves forward to the right in the
diagrams. The lines represent the motion of particles in space and time and the
vertices represent their interactions. Photons are represented with wavey lines.
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Figure 10.6: Feynman diagrams of the interaction of electrons with the electromagnetic
field. (a) Photon–electron scattering. (b) Electron–electron scattering. (c) Electron–electron
scattering with first order vacuum polarization loop.

Lines that are connected at two vertices are virtual particles. The virtual parti-
cles are the carriers of the “force” by which particles interact with one another.
Energy and momentum, or the four vector quantity energy–momentum is con-
served at each vertice and as time passes (thus resulting in deflected particle
paths).

The interaction represented in Figure 10.6a is the scattering between an
electron and a photon. Note that following the electron–photon interaction, a
virtual electron temporarily conserves and carries the energy–momentum of the
system through time, following which an electron and photon are released, also
conserving energy–momentum. In Figure 10.6b, a zeroth order electron–electron
scattering is represented. The reaction takes place by the passage of a virtual
photon that transports energy–momentum between the electrons.

Perturbation theory accounts for higher order interactions between virtual
particles (the carriers of force) during the interactions. In Figure 10.6c, a first
order perturbation to the virtual photon is illustrated. The virtual photon
converts into a virtual electron–positron pair, which annihilate and convert back
into a virtual photon. This first order pheonomenon is known as a vacuum
polarization loop. In the atom, where the interaction is between protons and
electrons, the electron attracts the virtual positrons and repulses the virtual
electrons in these polarization loops (of which there can be an infinite number of
possibilities). This polarization in the immediate vicinity of the electron results
in a “screeing” of the bare electron charge. The effect of this screening increases
with distance from the electron, that is e = e(r). Vacuum polarization also
results in a change in α as a function of proximity of the interacting particles.

These modifications to the forces between particles are known as radiative
corrections and, as mentioned above, they are handled through the formalism
of quantum electrodynamics. Full treatment requires that all possible combina-
tions of higher order polarization loops be accounted. The energy corrections,
based upon the lowest order radiative corrections (see Bethe & Salpeter, 1957),
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are
∆En0

En
= −8α

3π

(Zα)2

n

[

19

13
+ Kn0

]

(10.16)

for the s (l = 0) states, and are

∆Enl

En
= −8α

3π

(Zα)2

n

[

3

8

1

Clj(2l + 1)
+ 2 logZα + Knl

]

(10.17)

or all l *= 0 states, where

Clj =

{

l + 1 j = l + 1/2
−l j = l − 1/2.

(10.18)

The terms Kn0 and Knl can be expressed most simply as

Knl =
3n3

16

∑

n

〈f1n〉 [(En − E1)/h]2 log |(En − E1)/h| , (10.19)

where 〈f1n〉 is the mean oscillator strength (see § 11.6.3) for transitions from
level 1 to level n. The sum is over all levels, including the continuum states1.
The numeric value of Kn0 is on the order of unity to 1.3, and the value of Knl

is on the order of a few × 10−2 for the l = 1 states and a few × 10−3 for the
l = 2 states.

In Figure 10.7, the energy shifts following radiative corrections, or the Lamb
shifts, are illustrated for levels n = 1, 2, 3. The left most levels are the non–
relativistic energies from the Schrödinger treatment, whereas the central levels
are the fine structure splittings from the Dirac treatment. The Lamb shifts are
shown on the right, though the scale is exaggerated relative to the fine structure
separations. The selection rules for fine structure transitions apply identically
for the Lamb shifted transitions. Thus, the number of spectral multiplets for
∆n ≥ 1 transitions are unchanged by the Lamb shifts which serve only to
shift the Dirac energies (and therefore the observed wavelengths of the spectral
multiplets).

Since ∆n = 0 is allowed by the selection rules for transitions, we see that
additional radio wavelength spectral features are predicted above and beyond
those resulting from fine structure alone; for example, the famous 2s1/2–2p1/2

transition, and both the 3s1/2–3p1/2 and 3p3/2–3d3/2 transitions that are energy
degenerate in the Dirac theory.

The fine structure splitting is on the order (Zα)2, whereas the magnitude of
the Lamb shifts are on the order α(Zα)2, placing them on the order of less than
a percent of the fine structure separations. For j ≥ 3/2 the energy splitting
of the levels due to the Lamb shift is ∼ 0.2% of the fine structure separation.
Though we have not yet discussed the natural widths of the states (which are
due to Heisenberg’s uncertainty principle and the finite lifetime of the states),
we point out that the widths of the states can be on the order of the Lamb
shifts. For j = 1/2 the natural energy width of the state is narrower than the
Lamb shift; but for j ≥ 3/2 the natural width is greater than the Lamb shift.

1For clarity, we have substantially simplified discussion of the treatment. Further details
may be sought in standard texts on quantum mechanics of atomic states.
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Figure 10.7: The energy shifts in the n = 1, 2, and 3 levels due to the Dirac fine structure
splitting and the radiative corrections (also called the Lamb shift). The energy splittings are
not to scale in that the Lamb shifts are expanded relative to the fine structure splittings.

10.5.2 Hyperfine structure

Additional energy splittings, known as hyperfine splittings, were deduced based
upon the spectrum of hydrogen. Such detail in the spectrum was noted prior
to 1900 by Michelson and by Fabry and Perot. As postulated by Pauli in 1924,
there should be a weak interaction between the magnetic moment of the nucleus
and that of the electron. Recall that electron spin was hypothesized to explain
the magnetic moment of that particle and to explain fine structure spittings.
We thus introduce the nuclear spin state, I, which follows the quantum rules

I = 0, 1
2 , 1, 3

2 , 2, 5
2 , ...

|I| =
√

I(I + 1) h̄

MI = −I,−I+1, ...I−1, I,

(10.20)

where MI provides the magnitude Iz = MI h̄. The nuclear spin is treated
similarly as with the electron spin, behaving as an angular momentum of sorts.
This spin results in electromagnetic multipoles, of which the magentic dipole
moment and electric quadrapole moment dominate in strength. We discuss
the dominant of the two, namely the magnetic dipole moment MN = gI µNI/h̄,
where gI is the nuclear Lande’ factor (of order unity), and µN is the nuclear
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magneton,

µN =
me

mp
µB =

eh̄

2mpc
(10.21)

where µB = eh̄/2mec is the Bohr magneton for the electron.
The nuclear and electron magnetic dipole moments interact through both

the angular momentum L and the spin S. The lowest order correction term for
the interaction to be added to the Hamiltonian is

H =
2

h̄2

gI µNµB

r3

[

L·I− S·I + 3
(I·r)(S·r)

r2

]

, (10.22)

for r *= 0. We simplify the model by writing the total angular momentum as
the vector sum of the nuclear and electron components,

F = I + J (10.23)

where the addition rules are

F = |I−j|, |I−j|+1, ..., I+j−1, I+j

|F| =
√

F (F + 1) h̄

MF = −F,−F +1, ...F−1, F,

(10.24)

and where MF provides the magnitude Fz = MF h̄. The vector summation
F = I + J and J = L + S are illustrated in Figure 10.8. The total angular
momentum precesses about the z axis with projection MF , whereas the electron
angular momentum precesses about F with z projection mj .

J

m   

3/2

0

1/2

1

L

I
1

5/2

S
F

F

Figure 10.8: A schematic of the vector summation of I + J to obtain the total angular
momentum. The vector S adds with L to form J, where S and L precess about the resulting
J. The vector I adds with J to form F, where I and J precess about the resulting F.

The resulting wave functions are now described by the stationary states
nljmjFMF , which can be expressed as linear combinations of the stationary
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states nljmjIMI . The resulting energy corrections are

∆E = 2
gI µNµB

n3

(

Z

aµ

)3 [F (F + 1) − I(I + 1) − j(j + 1)

j(j + 1)(2l + 1)

]

. (10.25)

Substitution of the fundamental constants for the magnetons and reduced Bohr
radius, aµ, in Eq. 10.25 yields

∆E

En
= 2gI

me

mp

(

µ

me

)2 Zα2

n

[

F (F + 1) − I(I + 1) − j(j + 1)

j(j + 1)(2l + 1)

]

. (10.26)

Note that because MF can take on 2F + 1 values, each hyperfine level is 2F + 1
degenerate.

The hyperfine energy levels of hydrogen for n = 1 and 2 are illustrated in
Figure 10.9, which shows the states for the combinations of ljF . The number of
resulting hyperfine multiplets is always the lesser of the multiplicity of j states
or the the multiplicity of I states,

hyperfine multiplets = min (2I + 1, 2j + 1) . (10.27)

Because I = 1/2 for the hydrogen nucleus, the hyperfine splittings are all dou-
blets. For deuterium, for example, I = 1, so that the hyperfine multiplets are
doublets for j = 1/2 and are triplets for all j ≥ 3/2.

21 cm

1

n = 2

1s
1/2

2p
1/2

2s
1/2

2p
3/2

2p
1/2

2s
1/2

F =0
F =1

F =0
F =1
F =0
F =1

F =2
F =1

non−relativistic radiative correctionsfine structure hyperfine splits

n =

Figure 10.9: The hyperfine energy splits in the n = 1 and 2 levels due to the magnetic dipole
interaction approximation as derived from the formalism of the nuclear spin interaction. The
energy levels are presented similarly as in Figure 10.7. The scales are exaggerated from left
to right, with the hyperfine splitting at the far right labeled as the F states. The permitted
transitions, based upon the selection rules of the dipole approximation, are shown as the solid
downward arrows. The forbidden ground–state F = 1 to F = 0 transition giving rise to the
famous 21–cm emission and absorption is illustrated by the dashed open arrow.

The dipole selection rules for hyperfine transitions are ∆l = ±1, ∆j = 0,±1,
and ∆F = 0,±1, with the stipulation that F = 0 to F = 0 is forbidden. There is
no restriction on ∆n, the principle quantum number. The permitted hyperfine
transitions for n = 1, and 2 are illustrated in Figure 10.9 as the solid arrows. For
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transitions with ∆n ≥ 1, the energy differences of permitted transitions, and
therefore the ultraviolet and optical spectrum of hydrogen, remain dominated
by the fine structure levels. This is because radiative corrections and hyperfine
structure are refinements on the order of a tenth of a percent and a hundredth
of a percent of fine structure, respectively.

Transitions between F states with ∆n = 0 comprise the infrared and mi-
crowave region of the hydrogen spectrum; the features are often very weak. We
note that the famous radio 21–cm radiation is the F = 1 to F = 0 hyperfine
transition of the ground state, for which ∆l = 0, which is not permitted by the
dipole selection rules. This forbidden transition is illustrated in Figure 10.9 as
the dashed open arrow.

10.5.3 Isotope shifts

Isotope shifts do not result in energy splittings, but in energy shifts. There are
two types of isotope shifts; the first is a mass effect and the second is a volume
effect. The mass effect is simply an energy correction due to the dependence of
the center of mass of the atom on the finite mass of the nucleus. The second
is a correction due to the fact that the nucleus is not a point charge, but has a
charge distribution, the form of which depends upon the volume of the nucleus,
which in turn depends upon the number of nucleons. Here, we continue our
focus on single electron atoms and ions.

Reduced mass

For hydrogen atoms and hydrogen–like ions, the finite mass of the nucleus is
accounted using the reduced mass of the single bound electron,

µ =
me

1 + me/mN

, (10.28)

which is derived from the relations rN + re = rn and mere = mNrN, where
the terms are defined and illustrated in Figure 9.1a. The Bohr and Schrodinger
energies are directly proportional to µ. The relativistic and higher–order correc-
tions to these energies are also directly proportional to µ (though the hyperfine
splittings are proportional to µ3). The larger mN, the larger µ becomes, asymp-
totically approaching µ = me, the value for an infinite mass nucleus. As such,
the lightest elements have the greatest energy shifts due to the mass effect.

An important astrophysical quantity is the cosmological deuterium to hy-
drogen abundance ratio. This ratio can be estimated from absorption systems
using the relative strengths of the Lyman series absorption features from hydro-
gen and dueterium, the latter of which includes and additional neutron of mass,
mn, in the nucleus. Since transition energies have proportionality ∆E∝µ∝1/λ,
the fractional wavelength shift between hydrogen and deuterium for any given
transition is

λD − λH

λH

=
1/µD − 1/µH

1/µH

=
mH/mD − 1

1 + mH/me
(10.29)
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where mH = mp, yielding mH/me = 1836.15, and where mD = mp + mn,
yielding mH/mD = 0.500384. Thus, the fractional wavelength shift between
deuterium and hydrogen spectral features is 0.027%. For the Lyα transition at
λH = 1216.6701 Å, this corresponds to an observed wavelength shift of −0.33 Å
in the rest–frame.

Mass polarization correction

The ratio of the radius of the nucleus to the size of the Bohr orbit is on the order
of 10−5. As such, the zeroth order approximation is to treat the nucleus as a
point mass and point charge distribution. As early as 1931, it was realized that
the different proton distributions of the isotopes for a given atom or ion will
produce unique energy shifts. For multi–electron atoms, the interaction term is
known as the mass polarization correction.

Electrons in stationary states that have non–zero charge density at the origin
will be most strongly affected by the charge distribution of the nucleus. Assum-
ing the volume of the nucleus can be approximated as (4π/3)R3 = (4π/3)Ar3

0 ,
were r0 . 10−13 [cm] is roughly the radius of a single nucleon and A is the atomic
mass number (the number of nucleons in the nucleus). Within this volume, the
charge density will be slightly modified, since the electrostatic potential will
depart from V (r) = −Ze2/r. We have

V (r) =















Ze2

2R

(

r2

R2
− 3

)

r ≤ R

−Ze2

r
. r > R

(10.30)

The correction term of the Hamiltonian is the difference between Eq. 10.30 and
−Ze2/r, yielding

H =
Ze2

2R

(

r2

R2
+ 2

R

r
− 3

)

, (10.31)

for r ≤ R and H = 0 for r > R. The energy correction term2 is (see Eq. 9.34),

∆E =

∫ R

0

∫ 2π

0

∫ π

0
ψ∗

nlm(r)Hψnlm(r) dV

=
Ze2

2R

∫ R

0
|Rnl(r)|2

(

r2

R2
+ 2

R

r
− 3

)

r2dr.

(10.32)

Making the approximation Rnl(r) . Rn0(0), and substituting |Rn0(0)|2 =
(1/π)(Z/naµ)3 as obtained from Eq. 9.52, we obtain

∆E =
2

5
e2R2 Z4

n3a3
µ

=
2

5
e2r2

0A
2/3 Z4

n3a3
µ

l = 0. (10.33)

2We use the states nlm in Eq. 10.32 because we are determining the perturbation correction
to the Schrödinger stationary states.
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From Eq. 9.5, En = −(µc2/2)(Zα/n)2 = (e2/2aµ)(Z/n)2, we the fractional
correction is

∆E

En
= −4

5
A2/3 r2

0

a2
µ

Z2

n
= −4

5
A2/3 r2

0µ
2c2

h̄2

(Zα)2

n
l = 0, (10.34)

where the ratio (r0/aµ)2 . 5 × 10−10. Note that the nature of the energy
correction is that l = 0 electrons are less bound in proportion to the volume of
the nucleus. For hydrogen and deuterium, the energy shift is a minimum, on the
order of ∆E/En . 10−10 and with ∆E/En for deuterium a factor of 22/3 = 1.6
larger than for hydrogen. The correction is largest for the 1s states of large Z
hydrogen–like ions.

10.5.4 Energy scales of corrections

In Table 10.1, the fractional energy corrections to the Schrödinger energies are
listed in multiples of the the scaling factor, α, the fine structure constant. Also
included are the dependence to the nuclear charge, Z, and the principle quantum
level, n. In the case of hyperfine structure, the ratio me/mp is an additional
proportionality of order 5×10−4. The magnitudes of the fractional corrections to
the energies, ∆E/En, are listed in the last column, where En is the Schrödinger
energy, (µc2/2)(Zα/n)2. Since ∆E/E = ∆λ/λ, the third column also provides
the order of magnitude of the fractional correction to the transitions wavelength.

Table 10.1: Magnitude of energy corrections

Interaction Energy Fractional Correction ∆E/En

Fine structure Z2α2/n2 5 × 10−5 Z2/n2

Lamb shift Z2α3/n 4 × 10−7 Z2/n

Hyperfine structure (me/mp)(µ/me)2Zα2/n 3 × 10−8 (µ/me)2Z/n

Mass polarization A2/3(r2
0µ

2c2/h̄2)Z2α2/n 5 × 10−10 A2/3Z2/n

In the ultraviolet region of the spectrum, for λ ∼ 1000 [Å] and Z/n = 1,
the fractional wavelength corrections are ∆λ . few× 10−2, 10−4, and 10−5 [Å],
respectively. For transitions in large Z elements, the fine structure splitting can
be as large as a few to several angstöms. The lamb shifts for such transitions
are on the order of a few × 10−2 [Å].

The resolving power of modern astronomical spectrographs are characterized
by the quantity Rs = λ/∆λs, where ∆λs is the fwhm of an unresolved fea-
ture. The precision of centroiding an absorption feature is typically 0.1∆λs =
0.1λ/Rs. As such, resolutions on the order of 100 are marginally capable of
resolving fine structure multiplets and resolutions on the order of 10,000 are
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marginally capable of centroiding to the accuracy of the Lamb shift energy cor-
rections. In order to resolve hyperfine multiplets in ultraviolet violet and optical
spectra, resolutions greater than 100,000 are required.

Note that the fractional energy corrections leading to the fine structure
and Lamb shift are independent of the mass shift, i.e., the reduced mass µ,
whereas the fractional correction leading to hyperfine structure is proportional
to (µ/me)2. Since En ∝ µ, we see that the resulting energies shifts and/or
splittings will in fact be unique to each isotope. As the mass of the nucleus
increases, the difference between isotopes dimishes for the mass shift; however,
the mass polarization shift increases (for l = 0 states).
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Chapter 11

Atomic Transitions

The Bohr model was based upon two postulates, and the second of these postu-
lates was in defiance of well established classical laws of physics. In fact, Bohr’s
model of hydrogen was a dipole configuration with accelerating charges. It was
a major shortcoming of the model that the orbiting (and therefore accelerating)
electron did not radiate and lose energy. A second shortcoming of the model
is that the relative intensities of the emission and absorption transitions in the
spectra could not even be addressed. The wave model of the atom naturally
resolved both these issues.

A transition occurs over a very short time period in which the electron
charge densities oscillate between two stationary states, with a frequency ωn′n =
(En−En′)/h̄, which is the Bohr frequency corresponding to a photon with wave-
length λ = 2πc/ωn′n. In the case of emission, that atom radiates a photon of
wavelength λ. In the case of incident photons on the atom, those of wavelength
λ will induce the oscillation between stationary states. Because the time depen-
dence of the wave function for the atom is understood as a superposition of all
stationary states (Eq. 9.35),

Ψ(r, t) =
∑

n

cn(t)ψn(r) exp {−i(En/h̄) t} , (11.1)

where the cn(t) are time dependent coefficients each providing the amplitide
of the eigenstate n at time t, the oscillation can occur simultaneously between
multiple states of differen n′ and n. The time depedence for stationary states
was originally stated in Eq. 9.29, where interpretation is that the stationary
state has an amplitude of ψn(r,φ, θ) at r that oscillates with angular frequency
ωn = En/h̄. Recall that although the state is stationary, i.e., spatially bounded,
it behaves as standing wave “packets” with oscillation energy En.

The two states between which a completed transition finally takes place is a
matter of the time dependence of the cn(t), for which the probability of a given

223
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state transitioning to another state is |cn′n(t)|2, where

ċn′n(t) . − i

h
exp {−(i/h̄)(En − En′) t}

[
∫ ∞

0

∮

ψ∗
n′ V (r, t)ψn dV

]

, (11.2)

where V (r, t) is the time varying potential. The integration of Eq. 11.2 for
all n′n yields a matrix of transition probabilities (see Eq. 11.4). A transition
process within an atom transpires over a short period of time and is viewed
as a multitude of stationary states oscillating between one another at different
frequencies, but for which the amplitudes (probabilities) are different; the final
transition will occur to one of these states based upon its relative probability
(where the resonance mode dominates).

11.1 Transition probabilities

Calculating transition probabilities requires time–dependent perturbation the-
ory, the treatment of which is beyond the scope of this book. Essentially, a time
dependent “correction term” to the Hamiltonian is introduced that includes the
interaction of the electron with the electromagentic field. As with any time
varying electromagnetic system, the spatial distribution of emitted radiation,
or the sensitivity to absorption, depends strongly upon the orientation of the
electric field polarization, ε̂, with respect to the geometry of the system if the
system is not spherically symmetric. As such, we will need to consider various
polarization directions, from which averages over all polarization directions can
be determined.

Following insertion of the Hamiltonian into the time dependent Schrödinger
equation (Eq. 9.23), we obtain that the probability per unit time for a sponta-
neous transition between state n and state n′ (where we adopt the convention
n > n′) at wavelength λ for a photon with electric field polarization ε̂ and
wavenumber k = k ŝ = (2π/λ) ŝ, where ŝ is the propagation direction into solid
angle dΩ is (Bethe & Salpeter, 1957)

Wk,ε̂
n′n dΩ =

e2h̄ωn′n

2πm2
ec

3

∣

∣

∣
Mk,ε̂

n′n

∣

∣

∣

2
dΩ, (11.3)

where

Mk,ε̂
n′n =

∫ ∞

0

∮

ψ∗
n′(r) [exp{i(k · r)}ε̂ · ∇] ψn(r) dV, (11.4)

is known as the matrix element, and where

ωn′n = 2πν = ck =
1

h̄
(En − En′) (11.5)

is proportional to the energy difference of the unpretrubed two stationary states.
The exponential term in Eq. 11.4 arises from the assumption of the weak field
approximation to the electromagnetic vector potential, usually denoted A(r, t).
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We have used the shorthand n′ to represent the stationary state n′l′m′
l and

n to represent the stationary state nlml, i.e., the non–relativistic Schrödinger
states ignoring fine–structure, radiative corrections (Lamb shifts), and hyperfine
structure. We will discuss fine structure transitions in § 11.6.

Importance of wave functions

The form of the matrix element highlights the critical importance of knowing
the wave functions for the stationary states. The calculation of the relative
strengths of transitions are related to their transition probabilities; transitions
between different stationary states will have different transition probabilities and
therefore different intensities. The spontaneous emission intensities are obtained
by multiplying the transition probabilities by the photon energy, h̄ωn′n.

As we shall see below, similar principles apply for absorption. Thus, in the
context of spectral analysis, we shall see that the measure of the column density
from an absorption line has a proportionality to the matrix element, which
essentially is the volume integral over the moment of the charge density, (ψ∗

n′ψn)
between the two stationary states n and n′ corresponding to the transition.

11.2 The dipole approximation

The weak field assumption can further be simplified invoking the expansion
series

exp{i(k · r)} = 1 + (ik · r) +
1

2!
(ik · r)2 + · · · , (11.6)

for small k · r. For transitions on the order of 103 [Å], k . 105 [cm−1], whereas
the radial distance at where the electromagnetic potential acts on the electron
is r . aµ . 10−8 [cm]. Thus, |k · r| / 1, and we have exp{i(k · r)} . 1. This is
known as the dipole approximation; in this approximation all moments of the
magnetic field are vanished.

Substituting the dipole approximation for Eq. 11.6 into Eq. 11.4, and by
recognizing that the gradiant in Eq. 11.4 is related to the momentum operator,

p = −ih̄∇, (11.7)

we make the substitution

Mk,ε̂
n′n = ε̂ · i

h̄

∫ ∞

0

∮

ψ∗
n′(r)pψn(r) dV

= ε̂ · me(En − En′)

h̄2

∫ ∞

0

∮

ψ∗
n′(r) rψn(r) dV

(11.8)

where the last step invokes the Heisenberg relation, p = (−ime/h̄)(rH−Hr).
Invoking Eq. 11.5 and rewriting, we have

M ε̂
n′n =

me

h̄
ωn′n (ε̂ · rn′n) , (11.9)
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where

rn′n =

∫ ∞

0

∮

ψ∗
n′(r) rψn(r) dV. (11.10)

An interpretation of Eq. 11.10 is that it is the spatial moment of the charge
density between two stationary states. We will work out the evaluation of rn′n

in § 11.3. Multiplying by the electron charge, one obtains the electric dipole
moment between the states

P n′n = e rn′n. (11.11)

For the approximation applied, the conditions are the k · r = 2πr/λ / 1. Thus,
the approximation holds best for small r and longer λ. The approximation
breaks down for large n and in the X–ray region. In a semi–classical view, when
P n′n *= 0, there exists a dipole moment between the two stationary states n′

and n; if this moment is time varying, then radiation is emitted (or can be either
emitted via stimulation or absorbed in the presence of incident photons).

11.2.1 Revisiting Bohr’s postulates

Bohr’s first postulate that the electron does not radiate in its stationary state
can now be demonstrated as a consequence of the orthonomal properties of wave
functions for bound stationary states (even though they oscillate with frequency
ωn = En/h̄). Following Dirac, we find that there is no electric dipole moment
for a stationary state itself,

P nn = e rnn = e

∫ ∞

0

∮

ψ∗
n(r) rψn(r) dV = 0, (11.12)

because rnn = 0 (recall that the term n represent the full state, nlml). The
integral over all solid angle results in a contribution of unity because of the
orthonomal properties of the spherical harmonic functions (Eq. 9.51). It is the
integral over radius that vanishes,

∫ ∞

0
Rnl(r)Rnl(r) r3dr = 0, (11.13)

which occurs because there is no spatial moment to the radial distribution func-
tion. As such, there is no electric dipole moment for a given stationary state, and
therefore the bound electron does not radiate. Dirac further showed that the
dipole moment between two diffferent stationary states can be a non–vanishing
and time varying quantity,

P n′n(t) = e

∫ ∞

0

∮

Ψ∗
n′(r, t) rΨn(r, t) dV

= e

[
∫ ∞

0

∮

ψ∗
n′(r) rψn(r) dV

]

exp {−(i/h̄)(En − En′) t}

= e rn′n exp {−(i/h̄)(En − En′) t} ,

(11.14)
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as long as rn′n does not vanish. As we will show below, rn′n will vanishes
except for only certain combinations of n′l′m′ ↔ nlm. We thus see that a
dipole moment between certain states allows for the electron charge densities
to oscillate between these two states, with a frequency ωn′n = (En − En′)/h̄,
which is the Bohr frequency (2nd postulate) of the transition corresponding to
a photon with wavelength λ = 2πc/ωn′n. This oscillation will be short lived and
will, in the case of emission, radiate a photon of wavelength λ. In the case of
absorption, photons of wavelength λ will induce the oscillation between states.

11.2.2 Dipole emission transition rates

In the context of the dipole approximation, the spontaneous transition rate that
emits a photon of polarization ε propagating into solid angle dΩ can now be
written

W ε̂
n′n dΩ =

e2 ω3
n′n

2πh̄c3
|ε̂ · rn′n|2 dΩ, (11.15)

If the angle between the electric vector polarization ε̂ and the dipole axis rn′n

is cos θ, then the total transition probability over all solid angle (independent
of viewing direction) from state n′ to n is

An′n =
e2 ω3

n′n

2πh̄c3
|rn′n|2

∮

cos2θ dΩ =
4

3

e2 ω3
n′n

h̄c3
|rn′n|2 . (11.16)

11.3 The oscillator strength

Further examination of the transition probabilities is made convenient via in-
troduction of the oscillator strength,

fn′n =
2me

3h̄
ωn′n |rn′n|2 . (11.17)

The transition probability (Eq. 11.16) from state n to n′ can then be expressed

An′n =
2e2 ω2

n′n

mec3
fn′n. (11.18)

To account for linear polarization states of the radiation (from a dipole),
and eventually the average over these polarization directions, rn′n is computed
using the x, y, and z projections of the dipole moment for radiation with electric
field polarization parallel to the x, y, and z axes. The oscillator strength is then
written,

fn′n = fn′l′m′

nlm (↑) =
2me

3h̄
ωn′n

(

∣

∣

∣
xn′l′m′

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′l′m′

nlm

∣

∣

∣

2
+
∣

∣

∣
zn′l′m′

nlm

∣

∣

∣

2
)

(11.19)

where the explicit notation fn′l′m′

nlm (↑) denotes a transition from upper state nlm
to lower state n′l′m′, with the arrow providing the direction of the transition
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with respect to the indices. We will ultilize the simpler version of the nota-
tion, i.e., fn′n when such simplification is possible without loss of precision in
meaning. From the spherical relations x = r cosφ sin θ, y = r sinφ sin θ, and
z = r cos θ, the components to the dipole moment are

xn′l′m′

nlm =

∫ ∞

0
Rn′l′(r)Rnl(r) r3dr

∮

Y ∗
l′m′(φ, θ)Ylm(φ, θ) cosφ sin2θ dθ dφ

yn′l′m′

nlm =

∫ ∞

0
Rn′l′(r)Rnl(r) r3dr

∮

Y ∗
l′m′(φ, θ)Ylm(φ, θ) sinφ sin2θ dθ dφ

zn′l′m′

nlm =

∫ ∞

0
Rn′l′(r)Rnl(r) r3dr

∮

Y ∗
l′m′(φ, θ)Ylm(φ, θ) cos θ sin θ dθ dφ,

(11.20)
Using this formalism, determination of the transition probabilities involves com-
puting the xn′l′m′

nlm , yn′l′m′

nlm , andzn′l′m′

nlm .
As alluded to above, not all rn′n are non–zero for n′ *= n; there are defi-

nite selection rules that apply and they are specific to the polarization direction
of the photon electric field. Consider photons polarized with ε̂ in the z direc-
tion. We find that integration of zn′l′m′

nlm over φ vanishes unless m = m′, since
Φ∗

m′(φ)Φm(φ) = (2π)−1 exp{i(m − m′)φ} = 1, so that the integral over the az-
imuthal angle, φ → 2π is unity. For all m *= m′, the integral averages to zero.
We also find that integration over θ vanishes unless l′ = l ± 1 (though this is a
more involved calculation). We thus find the general result

zn′l′m′

nlm = 0 (l′ *= l ± 1, m′ *= m), (11.21)

For all cases in which l′ = l±1 and ∆m = 0, the results for photons with z axis
polarization are

zn′ l+1 m
nlm =

√

(l + 1)2 − m2

(2l + 3)(2l + 1)
Rn′ l+1

nl

zn′ l−1 m
nlm =

√

l2 − m2

(2l + 1)(2l − 1)
Rn′ l−1

nl

(11.22)

where Rn′l′

nl is the spatial magnitude of the dipole moment,

Rn′l′

nl =

∫ ∞

0
Rn′l′(r)Rnl(r) r3dr, (11.23)

which is commonly called the radial overlap integral. Obtaining the x and
y components to the dipole moment is more complicated, but is simplified by
combining the components such that the polarization is in general perpendicular
to the z axis. Stating the result directly, we find

∣

∣

∣
xn′l′m′

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′l′m′

nlm

∣

∣

∣

2
= 0 (l′ *= l ± 1, m′ *= m ± 1), (11.24)
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for all integrals except when ∆l = ±1 and ∆m = ±1. Thus, radiation with
polarization perpendicular to the z axis (in the dipole approximation) can only
occur if the electron angular momentum and the z projection of the electron
angular momentum change by a single integer in the constants of motion. For
these permitted transitions, we have
∣

∣

∣
xn′ l+1 m+1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l+1 m+1

nlm

∣

∣

∣

2
=

(l + m + 2)(l + m + 1)

(2l + 3)(2l + 1)

(

Rn′ l+1
nl

)2

∣

∣

∣
xn′ l+1 m−1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l+1 m−1

nlm

∣

∣

∣

2
=

(l − m + 2)(l − m + 1)

(2l + 3)(2l + 1)

(

Rn′ l+1
nl

)2

∣

∣

∣
xn′ l−1 m+1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l−1 m+1

nlm

∣

∣

∣

2
=

(l − m)(l − m − 1)

(2l + 1)(2l − 1)

(

Rn′ l−1
nl

)2

∣

∣

∣
xn′ l−1 m−1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l−1 m−1

nlm

∣

∣

∣

2
=

(l + m)(l + m − 1)

(2l + 1)(2l − 1)

(

Rn′ l−1
nl

)2

(11.25)

11.3.1 Selection and sum rules

The non–vanishing terms of the dipole moment between stationary states pro-
vide the selection rules for transitions. Employing ∆m = m′−m, and ∆l = l′−l,
we have

ε̂ ‖ to z ε̂ ⊥ to z

∆l ±1 ±1

∆m 0 0,±1.

(11.26)

Thus, accounting for all orientations of polarization, we have the selection rules
∆m = 0,±1, and ∆l = ±1. Transitions that obey these rules are called “per-
mitted”. Below, we will discuss “forbidden” transitions, which are governed by
the electric quadrapole and magnetic dipole approximations.

The oscillator strength obeys various useful sum laws, the most often quoted
being the Thomas–Reiche–Kuhn rule,

∞
∑

n′=1

fn′l′m′

nlm (↑↓) = Ne (n′ *= n) (11.27)

where Ne is the number of bound electrons (Ne = 1 for hydrogen) , and where
the sum is taken over all transitions that originate in state nlm. This rule holds
regardless of the ionization stage of the atom and for any polarization direction.
For hydrogen, the oscillator strengths decrease in proportion to n−3 for large
values.

11.3.2 The average oscillator strength

The emission line intensities and absorption line strengths observed in spectra
arise from nl → n′l′ transitions between the 2l+1possible m′ states. We thus in-
troduce the average oscillator strength, which is the oscillator strength summed
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over all m′ states for the n′l′ state. Accounting for all possible orientations
of the polarization direction and all allowed transitions, we define the average
oscillator strength,

f̄n′n = f̄
n′l′

nl (↑) =
2me

3h̄
ωn′n

∣

∣

∣
rn′l′

nl

∣

∣

∣

2

=
1

3

hνn′n

RZ

1

a2
µ

∣

∣

∣
rn′l′

nl

∣

∣

∣

2

=
1

3

(n+n′)(n−n′)

n′2n2

1

a2
µ

∣

∣

∣
rn′l′

nl

∣

∣

∣

2
,

(11.28)

where
∣

∣

∣
rn′l′

nl

∣

∣

∣

2
=

l′
∑

m′=−l′

∣

∣

∣
rn′l′m′

nlm

∣

∣

∣

2
, (11.29)

and where we have invoked the energy relationships between Eqs. 11.5, 9.9 and
9.10 and have invoked the reduced Bohr radius, aµ = (µ/me) a0 (see Eq. 9.4)
and Rydberg’s constant (Eqs. 9.6 and 9.7). Note that f̄n′n depends only upon
the change in total orbital angular momentum and the change in principle level.
For l′ = l + 1, we have

l+1
∑

m′=−(l+1)

∣

∣

∣
rn′ l+1 m′

nlm

∣

∣

∣

2
=
∣

∣

∣
xn′ l+1 m+1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l+1 m+1

nlm

∣

∣

∣

2

+
∣

∣

∣
xn′ l+1 m−1

nlm

∣

∣

∣

2
+
∣

∣

∣
yn′ l+1 m−1

nlm

∣

∣

∣

2

+
∣

∣

∣
zn′ l+1 m

nlm

∣

∣

∣

2

=
l + 1

2l + 1

(

Rn′ l+1
nl

)2
.

(11.30)

Similarly, for l′ = l − 1, we have

l−1
∑

m′=−(l−1)

∣

∣

∣
rn′ l−1 m′

nlm

∣

∣

∣

2
=

l

2l + 1

(

Rn′ l−1
nl

)2
. (11.31)

Combining Eqs. 11.30 and 11.31 into a single expression,

∣

∣

∣
rn′l′

nl

∣

∣

∣

2
=

l′
∑

m′=−l′

∣

∣

∣
rn′l′m′

nlm

∣

∣

∣

2
=

max(l, l′)

2l + 1

(

Rn′l′

nl

)2
, (11.32)

where l′ = l + 1 or l′ = l − 1, and the term 2l + 1 is the multiplicity of states,
gn, reflecting the energy degeneracy for the initial state, n. Substituting into
Eq. 11.28, the average oscillator strength is

f̄n′n = f̄
n′l′

nl (↑) =
1

3

max(l, l′)

2l + 1

(n+n′)(n−n′)

n′2n2

(

Rn′l′
nm

aµ

)2

. (11.33)
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Because the multiplicity of initial state, gn = 2l+1, is the factor that effectively
averages the sum, the average oscillator strength for the opposite sense of the
transition, f̄nn′ , is not equal to f̄n′n. Explicitly, we have

f̄
nl
n′l′(↑) =

2l + 1

2l′ + 1
f̄

n′l′

nl (↑) =
gn

g′n
f̄

n′l′

nl (↑), (11.34)

which provides the well known relation

gn′ f̄nn′ = gnf̄n′n, (11.35)

where the statsitical weights represent the initial state of the inverse transitions.

11.4 Total average transition probabilities

From Eq. 11.18, the average total transition probability [sec−1] over all solid an-
gle and accounting for all polarizations of the emitted radiation for spontaneous
emission is

Ān′n = Ān′l′

nl (↑) =
2e2 ω2

n′n

mec3
f̄

n′l′

nl (↑), (11.36)

from initial state nl to final state n′l′, where n > n′. Often, the expression is
written

Ān′n = 8.0325× 109

(

hνn′n

R

)2

f̄
n′l′

nl (↑) sec−1, (11.37)

where the constant is (8π2e2/mec3)(R/h)2, where R is Rydberg’s constant (for
µ = me and Z = 1 for hydrogen). The total probability (per unit time) that
state n will spontaneously transition to a lower state is obtained by summing
the Ān′n over all lower states n′,

βn =
∑

n′<n

Ān′n, (11.38)

where βn is called the decay constant for level n. The mean life time of state n
is the inverse of the decay constant

〈tn〉 =
1

βn
=

(

∑

n′<n

Ān′n

)−1

. (11.39)

For absorption, the direction of the transition is reversed and one must
multiply by the power (energy per unit time) of the incoming radiation beam,

P =

∫ ∞

0
Pν(ν) dν =

∫ ∞

0

c3

4hν3
ρν(ν) dν =

1

2

∫ ∞

0

2π2c2

h̄ω3
Fω(ω) dω, (11.40)

where ρν(ν) is the energy density per unit frequency, and where ρω(ω) =
Fω(ω)/c is the energy density per unit angular frequency with Fω(ω) being the
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flux [erg sec−1 cm−2 (rad sec−1)−1], the integral of the specific intensity, Iω (see
Eq. 4.8), integrated over 2π steradians (see Eq. 4.9). In Eq. 11.40, we have in-
voked the conservation per unit frequency interval, namely ρν(ν) dν = ρω(ω) dω.
Though there is a very narrow frequency range over which transitions can
occur (we will discuss this in § 11.7), we can approximate the integral as
a δ function evaluated at ω = ωn′n, the transition frequency, which gives
P = (π2c2/h̄ω3

n′n)F (ωn′n).

Thus, the corresponding absorption transition probability [sec−1] over all
solid angle and accounting for all polarizations of the absorbed radiation is

Ānn′ = Ānl
n′l′(↑) =

2π2e2

meh̄c

F (ωn′n)

ωn′n
f̄

nl
n′l′(↑)

=
2π2e2

meh̄c

F (ωn′n)

ωn′n

gn

g′n
f̄

n′l′

nl (↑)

=
4π2e2

3h̄2c
F (ωn′n)

∣

∣

∣
rn′l′

nl

∣

∣

∣

2
,

(11.41)

where we have invoked Eq. 11.34, and the definition of the average oscillator
strength Eq. 11.28. We note that e2/h̄c = α, which provides an alternate
expression for the constants.

11.4.1 Total line intensities

To obtain total average emission line intensities, we multiply the total sponta-
neous transition rate (Eq. 11.36) by the transition energy, h̄ωn′n,

J̄n′n = h̄ωn′nĀn′l′

nl (↑) =
2e2h̄ω3

n′n

mec3
f̄

n′l′

nl (↑). (11.42)

11.4.2 Total absorption cross sections

The quantity known as intenisity is not commonly applied for absorption. It is
more common to describe the line strength in terms of the integrated absorption
cross section, α, in units [cm2 absorber−1]. The term “integrated” denotes that
the cross section is the total over the frequency width of the absorption (not per
unit frequency or wavelength). The total absorption cross section is obtained
by multiply the total transition rate for absorption (Eq. 11.41) by the transition
energy, h̄ωn′n, and dividing by the incident flux, F (ωn′n). This latter step
derives from the definition of cross sections defined in Eq. 4.28 of § 4.3.2. We
have

αnn′ =

∫ ∞

0
αnn′(ω) dω =

h̄ωn′n

F (ωn′n)
Ānl

n′l′(↑) =
2π2e2

mec

gn

g′n
f̄

n′l′

nl (↑). (11.43)
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11.5 Evaluating radial overlap interals

In order to obtain the final expressions for the average oscillator strength, and
therefore the transition probabilites, the overlap integral

Rn′l′

nl =

∫ ∞

0
Rn′l′(r)Rnl(r) r3dr, (11.44)

must be evaluated. Accounting for the selection rule l′ = l±1, we note that the
overlap integral is symmetric with respect to the change in n and l,

Rn′ l−1
nl =

∫ ∞

0
Rn′ l−1′(r)Rnl(r) r3dr =

∫ ∞

0
Rn1(r)Rn′ l−1(r) r3dr (11.45)

since the choice of nl as the upper state and n′l′ as the lower state is arbitrary
(the subscripts can be interchanged)

Rn′ l−1
nl = Rnl

n′ l−1 (11.46)

Evaluating Rn′ l−1
nl is very difficult, but was worked out in closed from by Gordon

(1929) using the hypergeometric functions that appear in the radial component
of the wave function (see Eqs. 9.45 and 9.46). A more recent derivation has also
been presented by Malik, Malik, & Varnim (1991), who developed an expression
more suitable for numerical computation. The classic expression for n′ *= n is

Rn′ l−1
nl

aµ
=

(−1)n′−l

4(2l−1)!

√

(n+l)!(n′+l−1)!

(n−l−1)!(n′−l)!

(4n′n)l+1(n−n′)n+n′−2l−2

(n+n′)n+n′
Υn′ l−1

nm

(11.47)
where

Υn′ l−1
nm = F (−nr,−n′

r, 2l,−u)−
[

n−n′

n+n′

]2

F (−nr−2,−n′
r, 2l,−u) (11.48)

where u = 4n′n/(n−n′)2, and where nr = n − l − 1, and n′
r = n′ − l (recall

l = l′ − 1). The F are the generalized hypergeometric functions

F (α,β, γ, ζ) =
∞
∑

j=0

(α)j(β)j

(γ)j

ζj

j!
= 1 +

αβ

1!γ
ζ +

α(α + 1)β(β + 1)

2!γ(γ + 1)
ζ2 + · · · (11.49)

where (α)j is the Pochhammer symbol for the quantity

(α)j = α(α + 1)(α + 2) · · · (α + j − 1), (11.50)

where j is a positive integer. By definition, (α)0 = 1. Note that if either α or β
are null or negative integers then the hypergeometric series terminates.

The expression for n′ = n is much simpler,

Rn l−1
nl

aµ
=

Rnl
n l−1

aµ
=

3

2

√

n2 − l2. (11.51)
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In the Schrödinger theory, the energies are degenerate so that there would be no
corresponding spectral features, though the transitions are permitted. Account-
ing for higher–order interactions terms in the Hamiltonian, transitions between
fines structure states and between Lamb shift corrected energy states result in
microwave and radio spectral features, for which Eq. 11.51 applies.

11.5.1 Computing oscillator strengths

Conisder the Lyman series transitions between the 1s−np states, for which
n′ = 1, l′ = 0 and l = 1 for various n > n′. From Eq. 11.47, we have

(

Rn1
10

aµ

)2

=

(

R10
n1

aµ

)2

= 28n7 (n − 1)2n−5

(n + 1)2n−5
, (11.52)

For absorption, we compute (Eq. 11.33 and Eq. 11.34)

f̄
n1
10 (↑) =

1

3

(n + 1)(n − 1)

n2

(

Rn1
10

aµ

)2

=
28n5(n − 1)2n−4

3(n + 1)2n+4
. (11.53)

For the Lyα transition, n = 2, we obtain f̄
21
10(↑) = 0.4162. To obtain the mean

oscillator strength for emission, we apply Eq. 11.34. Multiplying by the ratio of
the multiplicity of states, (2l′ + 1)/(2l + 1),

f̄
10
n1(↑) =

1

3
f̄

n1
10 (↑). =

28n5(n − 1)2n−4

9(n + 1)2n+4
, (11.54)

which yields f̄
10
21(↑) = 0.1387 for Lyα emission.

In Table 11.1, we list the average absorption oscillator strengths for the Ly-
man and Balmer series transitions of hydrogen, computed directly from Eq 11.33
and Eq. 11.34. For each transitions, the ratio (Rnl

n′1/aµ)2 is given in the square
brackets. More extensive tables of these formulas can be found in Menzel &
Pekeris (1935) and Condon & Shortley (1964). Numeric values up to n = 8 out
the 4d and 4g states (the partial Lyman, Balmer, Paschen, and Brackett series)
are tabulated in Bethe & Salpeter (1957).

The average emission oscillator strengths for the Lyman and Balmer series
are obtained using, Eq. 11.34, from which we obtain

Lyman series 1s−np f̄
10
n1(↑) = 1

3 f̄
n1
10 (↑)

Balmer series 2s−np f̄
20
n1(↑) = 1

2 f̄
n1
20 (↑)

2p−nd f̄
21
n2(↑) = 3

5 f̄
n2
21 (↑)

2p−ns f̄
21
n0(↑) = 3

1 f̄
n0
21 (↑).

(11.55)

11.6 Fine structure transition rates

The above formalism for treating transition proabailities, emission intensities,
and absorption cross section neglects spin and realtivistic effects; Schrödinger
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Table 11.1: Lyman and Balmer series average oscillator strengths

Lyman

1s−np

f̄
n1
10 (↑) =

(n+1)(n−1)

3n2

[

28n7(n−1)2n−5

(n+1)2n+5

]

=
28n5(n−1)2n−4

3(n+1)2n+4

Balmer

2s−np

f̄
n1
20 (↑) =

(n+2)(n−2)

3 · 4n2

[

217n7(n2−1)(n−2)2n−6

(n+2)2n+6

]

=
217n7(n2−1)(n−2)2n−5

3 · 4(n+2)2n+5

2p−nd

f̄
n2
21 (↑) =

2(n+2)(n−2)

32 · 4n2

[

219n9(n2−1)(n−2)2n−7

3(n+2)2n+7

]

=
220n9(n2−1)(n−2)2n−6

33 · 4(n+2)2n+6

2p−ns

f̄
n0
21 (↑) =

(n+2)(n−2)

32 · 4n2

[

215n9(n−2)2n−6

3(n+2)2n+6

]

=
215n9(n−1)2n−5

33 · 4(n+1)2n+5

theory applies only for the two constants of motion (1) the electron angular
momentum and (2) its z axis projection, as described by the quantum numbers
l and ml, respectively.

The inclusion of spin resulted in a spin–orbit coupling interaction (via the
electron magnetic moment) and yielded new constants of motion, the total elec-
tron angular momentum and its z axis projects, as described by the quantum
numbers j and mj , respectively. As we described above (§ 10.2) for the in-
clusions of relativistic and spin–orbit effects, the eigenfunctions for stationary
state nlml no longer described a stationary state, primarily because ml is no
longer a constant of motion (L precesses about J, see Figure 10.2). Spin orbit
coupling resulted in small energy splittings between different j states with the
same l (given by ∆E2 in Eq. 10.10), which are 2j +1 degenerate for the various
Jz. The stationary state accounting for spin–orbit coupling is denoted by the
quantum numbers nljmj (see Eq. 10.5).

The second most significant modification to the Schrödinger sationary states
are energy shift (given by ∆E1 in Eq. 10.10) due to relativistic momentum of
the electron, which we described in § 10.3. The third modification was the
Darwin term for l = 0 electrons (given by ∆E3 in Eq. 10.10). The correction
terms ∆E1, ∆E2, and ∆E3 are based upon approximation methods (pertubation
theory) that will have errors on the order of (Zα)2. We have not described the
full relativistic treatment by Dirac (see e.g., Bethe & Salpeter, 1957, for a full
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treatment).

11.6.1 Pauli and Dipole Approximations

If one applies what is known as the Pauli approximation to the Dirac theory,
and then applies the dipole approximation, the final result is that the transition
probabilities between states nljmj and n′l′j′m′

j , summed over all jmj states, are
directly proportional to the Schrödinger theory transition nl to n′l′. A new set
of selection rules result that are similar to those for the Schrödinger stationary
states. The proportionality between the Schrödinger transition rates and those
for fine structure multiplets are derived via consideration of the multiplicity of
states. We briefly outline these results in the next few sections.

In the relativistic Dirac theory, the operator p = −ih̄∇ is replaced with
mec α, which is a 2× 2 matrix operator whose elements are the 2× 2 Pauli spin
matrices, σ. The wave functions themselves are also matrices known as four
component spinors. The result is that the operator of the matrix element (see
Eq. 11.4) is replaced accordingly,

exp {i(k · r)} ε̂ · ∇ → imec

h̄
exp {i(k · r)} ε̂ · α. (11.56)

We emphasize that this is a matrix operation on four component wave functions,
known as spinors (see below). The Pauli approximation consists of expanding
α in powers of the quantity p/mec, which results in the matrix element being
expressed to the first power of the Pauli spin matrices,

α =
1

mec

{

p +
1

2

[

k + i (k × σ)

]}

. (11.57)

Dropping the higher order terms has an associated error on the order of (Zα)2.
Applying the electric dipole approximation (§ 11.2) is mathematically equiv-

alent to setting k = 0 in Eqs. 11.56 and 11.57, which yields α = p/mec and
recovers the matrix element for the Schrödinger theory (Eq. 11.9)

M ε̂
n′n = ε̂ · i

h̄

∫ ∞

0

∮

u∗
n′(r)pun(r) dV =

me

h̄
ωn′n (ε̂ · rn′n) , (11.58)

where un(r) = u
j−l mj−ml

nljmj
(r,φ, θ) are the four component Pauli spinors,







u
+1

2+1
2

nljmj

u
+1

2−
1
2

nljmj






=

l√
2l+1

Rnl(r)







−
√

l−ml+
1
2 Yl ml+

1
2
(φ, θ)

√

l+ml+
1
2 Yl ml−

1
2
(φ, θ)













u
−1

2+1
2

nljmj

u
−1

2−
1
2

nljmj






=

l√
2l+1

Rnl(r)







√

l+ml+ 1
2 Yl ml+

1
1
(φ, θ)

√

l−ml+
1
2 Yl ml−

1
2
(φ, θ)






,

(11.59)
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written in terms of l and ml for direct comparison with the Schrödinger wave
functions with

rn′n = r
n′l′j′m′

j

nljmj
=

∫ ∞

0

∮

u∗
n′(r) run(r) dV. (11.60)

We remind the reader these wave functions were derived based upon the Pauli
approximation and are not the complete Driac wave functions. The z projection
of the electron spin is not constant of motion (S precesses around J), thus
ms does not appear in the un(r). Applying the dipole approximation has an
associated error on the order of Zα.

11.6.2 Selection rules

Determining the transition probabilities and selection rules of fine structure
transitions requires evaluation of Eq. 11.60. Following the Schrödinger theory,
it is convenient to employ the oscillator strength (see § 11.3). Using the su-
perposition principle, it is also instructive to write the spinors in terms of the
Schrödinger wave functions ψnlml(r) and the spin components of the two or-
thonomal functions χms , from which sums rules are derived that allow the fine
structure oscillator strengths to be written in terms of the Schrödinger theory
oscillator strengths. From superposition, we have

u
j−l mj−ml

nljmj
(r) =























∑

mj

αljmj
ms

ψnlml(r)χ+1
2

∑

mj

αljmj
ms

ψnlml(r)χ
−

1
2

,
(11.61)

where mj = ml + ms. The coefficients form a complete orthonomoral set

∑

ms

=
∣

∣αljmj
ms

∣

∣

2
= 1,

∑

j

(

α
ljmj

m′

s

)∗
αljmj

ms
= δmsm′

s
, (11.62)

from which the dipole moment for the relativistic wave functions (the spinors)
can be computed

r
n′l′j′m′

j

nljmj
=
∑

ms

αljmj
ms

(

α
l′j′m′

j
ms

)∗

r
n′l′m′

l
nlml

, (11.63)

where mj = ml + ms, and where r
n′l′m′

l
nlml

is given by Eq. 11.10.
As before, the non–vanishing terms of the components of the dipole mo-

ment between stationary states provide the selection rules for transitions. From
examination of Eq. 11.63, and the results given by Eqs. 11.21 and 11.24, the
dipole moment vanishes for all transitons except for ∆l = ±1 and ∆ml = 0,±1;
these selection rules immediatly apply. Since j = l ± 1/2, it also immediately
follows that ∆j = ±1 is a selection rule (below, we will see there are additional
selection rules).
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Employing Eqs. 11.30, 11.31, and 11.32, and summing Eq. 11.63 over all
final j′ and m′

j states, we have

∑

j′m′

j

r
n′l′j′m′

j

nljmj
=
∑

j′m′

j

[

∑

ms

αljmj
ms

(

α
l′j′m′

j
ms

)∗

r
n′l′m′

l
nlml

]

=
∣

∣

∣
rn′l′

nl

∣

∣

∣

2
. (11.64)

This sum rule demonstrates that the average oscillator strength (subject to the
Pauli and dipole approximations) is independent of the intial j and mj states
and the electron spin. Further, the sum rule expressed in Eq. 11.64 shows that
the average dipole moment over all j and mj fine structure states is proportional
to the dipole moment of the Schrödinger states (Eq. 11.29).

A full derivation of the oscillator strengths for transitions between indi-
vidual fine structure states (subject to the Pauli and electric dipole moment
assumptions) results in expressions identical to Eqs. 11.22 and 11.25 but with l
replaced with j and m (= ml) replaced with mj . The subscripts nlml on the
x, y, and z polarization components of the dipole moment are replaced with
nljmj. Full evaluation of Eq. 11.63 similarly vanishes for all transitions1 except
for ∆j = 0,±1 and ∆mj = 0,±1. In Eqs. 11.22 and 11.25, there is no analog for
∆j = 0. For ∆j = 0, in which ∆l = ±1 and mj = 0,±1, the dipole components
are

∣

∣

∣
z

n′l′jmj

nljmj

∣

∣

∣

2
=

m2
j

4j2(j + 1)2

(

Rn′l′

nl

)2

∣

∣

∣
x

n′l′j mj+1
nljmj

∣

∣

∣

2
+
∣

∣

∣
y

n′l′j mj+1
nljmj

∣

∣

∣

2
=

(j + m + 1)(j − m)

4j2(j + 1)2

(

Rn′l′

nl

)2

∣

∣

∣
x

n′l′j mj−1
nljmj

∣

∣

∣

2
+
∣

∣

∣
y

n′l′j mj−1
nljmj

∣

∣

∣

2
=

(j + m − 1)(j − m + 2)

4j2(j + 1)2

(

Rn′l′

nl

)2

(11.65)

An additional rule of transitions is that there must be a parity change in the
stationary states; this is known as Laporte’s rule. Parity change due to a tran-
sition follows (−1)∆l. The spin wave functions obey χ+1/2 = −χ−1/2. Since
∆l = ±1 it follows that m′

s = ms, (no spin flip for dipole transitions). Employ-
ing ∆l = l′−l, ∆s = s′−s, ∆j′−j, ∆mj = m′

j−mj , we have the fine structure
transition rules:

ε̂ ‖ to z ε̂ ⊥ to z

∆l ±1 ±1

∆s 0 0

∆j 0,±1 0,±1

∆mj 0,±1 0,±1

(11.66)

1For multi–electron atoms, J = L + S, where L =
P

l and S =
P

s, where the sums are
over all electrons. The additional rule is that J = 0 → J ′ = 0 is not allowed.
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11.6.3 Oscillator strengths

Though full calculation of the oscillator strengths for fine structure transitions
is relatively straight forward, the final results are more easily obtained by the
use of sum rules. From the sum rule given by Eq. 11.64, we obtain a second
sum rule, namely

∑

j′m′

j

f
n′l′j′m′

j

nljmj
(↑) = (2j + 1) f̄

n′l′

nl (↑), (11.67)

where the unprimed state represents the initial upper (higher n or higher en-
ergy) level. This is a very important relationship, which states that the average
oscillator strength over all j and mj states can be simply expressed as the oscil-
lator strength for the Schrödinger states times a single factor of proportionality,
which is the multiplicity of the inital state, 2j + 1.

The average oscillator strengths over all mj states, i.e., the oscillator strength
for transitions from nlj to n′l′j′ (the 2j + 1 energy degenerate fine structure
states), is given by 11.67 multiplied by the fractional normalized statistical

weight between the initial state and final state, Cl′j′

lj ,

f̄
n′l′j′

nlj (↑) =
∑

m′

j

f
n′l′j′m′

j

nljmj
= Cl′j′

lj

∑

j′m′

j

f
n′l′j′m′

j

nljmj
= Cl′j′

lj (2j + 1) f̄
n′l′

nl (↑), (11.68)

where

Cj′l′

jl =
g(lj|l′j′)
∑

j′

g(lj|l′j′)
(11.69)

and where g(lj|l′j′) is the relative statistical weight of the initial state lj to final
state l′j′ and the sum is taken over j′ for transitions sharing the same j state.
The convention is that the umprimed state is the upper state. To determine
the g(lj|l′j′), consider the fine structure mutliplet for a single electron atom, as
schematically illustrated in Figure 11.1.

The s–p doublet

The s1/2−p3/2 and s1/2−p1/2 doublet is shown in Figure 11.1a, as transitions α
and β, respectively. These two transitions share the s1/2 state and transition to
or from the split p1/2/p3/2 state. The relative statistical weights for transitions
sharing a given state are determined from the split state multiplicities, the 2j+1
z projections of J denoted by mj . Again, the convention is that the unprimed
state is the upper state. For α, the statistical weight of the split p3/2 state is

g(α) = 2j + 1 = 2(l+1/2) + 1 = 2l + 2. (11.70)

For β, the p1/2 state multiplicity is

g(β) = 2(l−1/2) + 1 = 2l. (11.71)
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The ratio is g(α) :g(β) = (l+1) : l. Since l = 1 for the unprimed state, we have
g(α) : g(β) = 2 : 1. We see that fine structure doublets between the s1/2 and
p1/2 and p3/2 states have intensity ratios and absorption cross section ratios of
2 : 1, where the s1/2−p3/2 transition has twice the strength of the s1/2−p1/2

transition. Note, since En,p3/2
> En,p1/2

, the shorter wavelength component of
a doublet has twice the intensity as the longer wavelength component. Amost
all doublets in spectra follow this intensity ratio behavior; the “blue” component
is twice the strength of the “red” component.

The p–d and d–f multiplets

For upper states with l > 1, there are always three components to the multiplet
(for single electron atoms). This scenario is illustrated in Figure 11.1b, where
the transitions d5/2−p3/2 or f7/2−d5/2 (denoted γ), d3/2−p3/2 or f5/2−d5/2

(denoted δ), and d3/2−p1/2 or f5/2−d3/2 (denoted ε), are illustrated.

1 j’=l’+ 1/2
j’=l’+ 1/2
j’=l’− 1/2

l

s p p d
d f

(b)(a)

γ
δ ε

α
β

j=l− 

= l−  
= l−  

j=l− 
j=l+ j=l+ 1/2

1/2

= l−  1/2 3/2

1/2
1/2

1/2
l’=l − 

Figure 11.1: (a) Schematic of fine structure transitions between s(l′ =0) and p(l=1) states,
which result in a doublet. The doublet ratio is g(α) :g(β) = 2:1. (b) Fine structure transition
between higher l states. Illustrated in this figure is a transition between p(l′=1) and d(l=2)
or a transition between d(l′ =2) and f(l=3), but the configuration is appropriate for ∆l = ±1
for which none of the states are the s state. The multiplet has three components with ratio
g(γ) :g(δ) :g(ε) = 9:1:5 for p–d and 20:1 :14 for d–f.

In principle, these triple multiplets can be taken to higher angular momen-
tum states, l, since the spin–orbit coupling for any l results in a single splitting,
j = l ± 1/2 (this is not the case in general for multi–electron atoms, as we will
elaborate upon below). Note that, under the electric dipole approximation, the
transitions d5/2−p1/2 and f7/2−d3/2 do not occur, since they would require
∆j = 2, which is not allowed by the selection rules.

Consider the upper levels (unprimed states) for dj −pj′ transitions. As
illustrated in Figure 11.1b, both δ and ε share at the same d1/2 state. As such,
it is the sum of statistical weights of δ+ε that are in proportion to the statistical
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weight for γ, which transitions from the d3/2 state. We have

g(γ) = 2j + 1 = 2(l+1/2) + 1 = 2l + 2,

g(δ) + g(ε) = 2j + 1 = 2(l−1/2) + 1 = 2l.
(11.72)

Similarly, for the lower levels (primed states) of the dj−pj′ transitions, δ shares
the d3/2 state with γ, and we see that the sum of statistical weights for δ+γ are
in proportion to the statsitical weight for ε. From examination of Figure 11.1b,
we have

g(ε) = 2j′ + 1 = 2(l′−1/2) + 1 = 2(l−3/2) + 1 = 2l − 2,

g(δ) + g(γ) = 2j′ + 1 = 2(l′+1/2) + 1 = 2(l−−1/2) + 1 = 2l.
(11.73)

We obtain the two ratios (two equations and three unknowns),

g(γ)

g(δ) + g(ε)
=

2l + 2

2l
,

g(ε)

g(δ) + g(γ)
=

2l − 2

2l
. (11.74)

Setting g(δ) = 1 and solving the two equations for two unknowns, we obtain
the relative statistical weight ratios

g(γ) :g(δ) :g(ε) = [(l + 1)(2l − 1)] :1 : [(l − 1)(21 + 1)], (11.75)

which shows that γ is the strongest transition, ε is the second strongest, and δ
is the weakest.

Computing oscillator strengths

From the above, the relative statistical weight ratios for the s, p, and d fine
structure multiples of hydrogen and hydrogen–like ions are

s ↔ p (l=1) g(p3/2|s1/2) :g(p1/2|s1/2) = 2:1

p ↔ d (l=2) g(d5/2|p3/2) :g(d3/2|p3/2) :g(d3/2|p1/2) = 9:1 :5

d ↔ f (l=3) g(f7/2|d5/2) :g(f5/2|d5/2) :g(f5/2|d3/2) = 20:1 :14.

(11.76)

Note that Eq. 11.76 can be extended by incrementing l and j.
To determine the fine structure oscillator strengths for transitions between

states nlj and n′l′j′, we require the Cl′j′

lj (Eq. 11.69) for evaluation of Eq. 11.68.
Consider the fine structure of the Hα transition, as illustrated in Figure 11.2.
The sums in Eq. 11.69 apply for transitions with shared upper states. Since α,
β, and γ do not share upper states with any other tranistions, we have

C(α) = C
0 1

2

1 3
2

= 1, C(β) = C
0 1

2

1 1
2

= 1, C(γ) = C
1 3

2

2 5
2

= 1. (11.77)
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s

 = 3

l  = 0 l  = 1 l  = 2

p d

n = 2

η

δ

1/2

1/2
3/2

1/2
3/2
5/2

1/2

3/2β

ε

α

ζ
γn

Figure 11.2: Schematic of the seven–fold spectral multiplet of the Hα fine structure transi-
tions. The slight energy offsets due to the Lamb shifts are illustrated, otherwise the identical
j states for each prinicple level n are degenerate in the Dirac theory.

Since η and ζ share the upper 3s1/2 state and δ and ε share the upper 3d3/2

state, we have

C(η) = C
1 1

2

0 1
2

=
g(η)

g(η)+g(ζ)
=

1

1+2
=

1

3

C(ζ) = C
1 3

2

0 1
2

=
g(ζ)

g(η)+g(ζ)
=

2

1+2
=

2

3

C(δ) = C
1 3

2

2 3
2

=
g(δ)

g(δ)+g(ε)
=

1

1+5
=

1

6

C(ε) = C
1 1

2

2 3
2

=
g(ε)

g(δ)+g(ε)
=

5

1+5
=

5

6
.

(11.78)

The ingredients to compute the f̄
n′l′j′

nlj (↑) for Hα fine structure transitions are
listed in Table 11.2. The tabulated values applies to emission. The multiplicity
2j + 1 (column 3) is that of the upper state. The average oscillator strengths
for the Schrödinger states are computed from the Balmer series formulae listed
in Table 11.1 and Eq. 11.55.

11.6.4 Fine structure line intensities and cross sections

One of the modifications that are required is that the multiplicity of states for
fine structure multiplets is 2j + 1. Thus,

We see that, to order Zα, the dipole moments between initial and final states
of transitions, and therfore, the transition probabilities, depend only upon their
intial and final l and ml states, a condition identical to the Schrödinger theory.
Thus, to a first order approximation, a transition rate between states nlj and
n′l′j′ is identical to a transition between the Schrödinger states nl and n′l′,

Ān′l′j′

nlj (↑) = Ān′l′

nl (↑), Ānlj
n′lj′ (↑) = Ānl

n′l′(↑), (11.79)
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Table 11.2: Fine structure oscillator strengths for Hα

Transition Cl′j′

lj 2j+1 f̄
n′l′

nl (↑) f̄
n′l′j′

nlj (↑)

(α) 2s1/2−3p3/2 1 4 0.142 0.57

(β) 2s1/2−3p1/2 1 2 0.142 0.28

(γ) 2p3/2−3d5/2 1 6 0.417 2.50

(δ) 2p3/2−3d3/2 1/6 4 0.417 0.28

(ε) 2p1/2−3d3/2 5/6 4 0.417 1.39

(η) 2p1/2−3s1/2 1/3 2 0.041 0.03

(ζ) 2p3/2−3s1/2 2/3 2 0.041 0.05

where Ān′l′

nl (↑) is given by Eq. 11.36 for emission and Eq. 11.41 for absorption.
On average, the inital j and mj state of the electron is irrelevant. This treatment
is tantamount to stating that ml is still a “good quantum number”, which is
equivalent to stating that the precession of L about J can be neglected to order
Zα.

11.7 Lifetimes and the radiation width

page 284 BS67
∆En = h̄/ 〈tn〉 = h̄βn = Γn

Define Γn as the radiation width of an energy level.

exp

{

− i

h̄

(

En − 1

2
iΓ

)

t

}

(11.80)
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