
Chapter 5

Astronomical spectra

Observational astronomical spectra are not only a direct recording of the ob-
served emitted flux of a distant source as a function of wavelength, Fλ, but also
of the absorption, scattering, and emission that modifies Fλ due to material
along the light path to the observer.

The utility of astronomical spectra is that the observed flux can be trans-
formed into physical conditions at the emission source, in the proximity of the
emission source, and/or of material intervening to the source. There are limits,
however. Often, the physical properties deduced from spectra can be reduced
no further than to integrated quantities. And, as we will discuss, many implicit
assumptions are lurking in the analysis (for example, assuming isotropic emis-
sion from the source, and/or assuming the optical depth is uniform across the
beam cross section).

In this chapter, we discuss these assumption in the context of absorption from
material intervening to an emitting source. We discuss the scenario in which
the material fully occults the source and in which the material only partially
occults the source (i.e., partial covering). We then show how the optical depth of
a single absorption feature can be written as the product of the column density
of the absorbing atomic species column density and the atomic absorption cross
section, α(λ). Thermal and/or dynamic motions of the atomic absorbers result
in a substantial spread in the distribution of photon wavelengths absorbed due
to the Doppler shifts. We briefly describe the thermal broadening in absorption
features via the probability distribution of atomic absorbers removing photons
at “offset” wavelengths. The dynamical broadening is incorporated into the
optical depth using the total absorption cross section, σ(λ). We then discuss
magnitudes and photometric systems and conclude by addressing atmospheric
attenuation of the observed flux.
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74 CHAPTER 5. ASTRONOMICAL SPECTRA

5.1 Absorption in astronomical spectra

In § 4.1.4, we derived Fλ for an unocculted, unresolved spherical source of radius
Rs at a distance D from the observer under highly simplifying assumptions
(these assumption were restated in § 4.1.4). Here, we formulate the flux integral
more generally by (1) relaxing the assumptions applied to the emitting source,
and (2) applying the solution of the 1–D equation of transfer for sources fully
occulted and partially occulted by an intervening absorption cloud. Finally, we
discuss modifications to the observed astronomical spectrum for ground based
observations.

5.1.1 Relaxing isotropy of the source

Consider a non–isotropic emitting source with specific intensity distribution
Iλ(R, φ, θ) such that the emitted intensity varies with the (φ, θ) locations on
the source surface. In the most general case, the source surface may not be
spherical, i.e., R = R(φ, θ). Applying the treatments presented in § 4.1.3, the
observed flux of an unocculted, unresolved source is

Fλ =
R2

s

D2

∫ 2π

0

∫ π/2

0
Iλ(R, φ, θ) cos θ sin θ dθ dφ, (5.1)

where it has been assumed that the observer is located a distance D from the
source on the +z axis, i.e., in the direction θ = 0 (see Figure 4.2). Recall that
the polar angle ranges from 0 ≤ θ ≤ π/2 for integration over the “near–side”
hemisphere of the source. By relaxing isotropy, the non–constant Iλ cannot be
factored out of the integral.

5.1.2 Intervening absorption

The schematic of the geometric configuration of an absorbing cloud intervening
to the emitting source is presented in Figure 5.1. Assume the source is unre-
solved. The line of sight to the observer for a single beam element is shown as
originating from an area element located at arbitrary azimuthal and polar an-
gular positions φ and θ with respect to the geometric center of the source. From
the observer’s point of view, this beam element passes through the absorbing
cloud at polar coordinate R sin θ, φ on the cloud face (in the plane of the sky).

To incorporate the absorption into the calculation of the observed flux, we
simply invoke the solution of the transfer equation for pure absorption (Eq. 4.49)
and insert it into Eq. 5.1. We have

Fλ =
R2

s

D2

∫ 2π

0

∫ π/2

0
Iλ(R, φ, θ) exp {−τλ(φ, θ)} cos θ sin θ dθ dφ. (5.2)

Note that the total optical depth through the cloud, τλ(φ, θ), must pair with
each Iλ(R, φ, θ) and is therefore a function of the azimuthal and polar angular
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5.1. ABSORPTION IN ASTRONOMICAL SPECTRA 75
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Figure 5.1: Non–isotropic specific intensity Iλ(R, φ, θ) is emitted from an area element
on the non–spherical surface R(φ, θ) at azimuthal and polar angular positions φ and θ, re-
spectively, with respect to the source center. The beam passes through an absorbing cloud
intervening to the observer at a location in the cloud corresponding to the φ and θ angular po-
sitions where the beam originated on the source. If the absorption coefficient is not constant
throughout the intervening cloud, then the total optical depth attentuating this particular
Iλ(R, φ, θ) is τλ(φ, θ); that is, the total optical depth corresponds to the R sin θ, φ location Iλ

probes the cloud, which depends upon the φ, θ location from which Iλ was emitted from the
source. The distance from the source to the observer is D along the +z axis. The distance of
the intervening cloud from the source and from the observer is arbitrary.

positions φ and θ, the point of origin of the specific intensity on the source sur-
face. This allows for non–uniform attenuation of different lines of sight through
the absorbing cloud. Invoking Eq. 4.37, the total optical depth as a function of
φ, θ is

τλ(φ, θ) =

∫ L(φ,θ)

0
χλ(s, φ, θ) ds, (5.3)

for a path length L(φ, θ) throught the cloud, where we allow that the cloud may
have non–uniform thickness.

Thus, a full treatment of Eq. 5.2 to obtain the observed attenuated flux in
each wavelength interval, λ → λ + dλ, requires an integral over the surface of
the source for which the optical depth through the intervening cloud associated
with each Iλ(R, φ, θ) element depends upon the φ, θ point of origin on the source
surface. The integral can only be evaluated if the optical depth corresponding
to each Iλ(R, φ, θ) is known; in practice, the mapping is an intractable problem–
when the source is unresolved, there is no observational data that can provide
the functional form of χλ(s, φ, θ) within the cloud nor of the path length L(φ, θ)
through the cloud.

The only way to evaluate Eq. 5.2 is to assume Iλ(R, φ, θ) and τ(φ, θ) are
independent of both φ and θ so that they can be factored out of the integral.
The common practice is to assume the source radiates isotropically, so that
Iλ(R, φ, θ) = Iλ(R), and that R = Rs is constant (a spherical source). An
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76 CHAPTER 5. ASTRONOMICAL SPECTRA

average cloud optical depth is also assumed, i.e., τ̄λ = χ̄λ 〈L〉, where χ̄λ and
〈L〉 are the mean extinction coefficient and mean total path length through the
cloud, respectively. None of these quantities can be known a priori.

The above assumptions may appear obvious and even somewhat trivial; how-
ever, it is worth explicitely formulating the problem of calculating the absorption
by an intervening cloud for an unresolved astronomical source. The point here
is to emphasize that virtually all published extragalactic work necessarily rests
upon these simplifying assumptions. Applying the assumptions and evaluating
Eq. 5.2, the observed flux is

Fλ =
R2

s

D2
πIλ(Rs) exp {−τ̄λ} =

R2
s

D2
Fλ exp {−τ̄λ} , (5.4)

where Fλ is the astrophysical flux of the source (Eq. 4.17).

5.1.3 Partial covering

The above treatment was based upon the assumption that the radiating source
is fully occulted by the intervening absorbing cloud. This condition may not
always hold true. Even if a source is unresolved from the perspective of the ob-
server, it is possible that the geometric configuration of the source and absorber
is such that the source is not fully occulted. This is known as partial cover-
ing. When partial covering is present, some beams carrying specific intensity Iλ

interact with the absorbing cloud (are occulted) and are modified as dictated
by the transfer equation, whereas the remainder of the beams propagate to the
observer without modification (are not occulted).

A simplistic example of partial covering is schematically illustrated in Fig-
ures 5.2a (face on view) and 5.2b (side view). In this scenario, the observed
solid angle of the intervening cloud is smaller than the observed solid angle of
the source.

λθ

(a) observer view (b) side view

emitting source intervening cloud

source beams to observer

emitting source

intervening cloud

Figure 5.2: A schematic of partial covering scenarios. Solid lines from the isotropic source
are specific intensity beams that are unobstructed by the intervening absorber, whereas dotted
lines are beams for which some level of absorption has occurred. A highly idealized case in
which the observed solid angle of the absorbing cloud (shaded) is smaller than the observed
solid angle of the source. In this scenario, the intervening cloud occults a area on the source
(lightly shaded) defined by a cone with angle θλ. (a) Face–on view. (b) Side view.

For heuristic purposes, we assume (1) from the observers perspective, the
intervening cloud is directly aligned with the center of a spherical source and
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5.1. ABSORPTION IN ASTRONOMICAL SPECTRA 77

that the projected cross section of the intervening cloud is circular, (2) the
emitted specific intensity is isotropic, so that Iλ(Rs, φ, θ) = Iλ(Rs), and (3) the
optical depth through the intervening cloud is uniform and constant, so that it
is independent of the location and path of the beam sight line through the cloud,
and therefore independent of the location from which the beam originated on
the surface of the source, i.e., τλ(θ, φ) = τλ. As shown in Figure 5.2b, the solid
angle of the region of the source that is occulted subtends an angle θλ, where
the subscript λ generalizes the possibility that the projected cross section can
vary with wavelength.

From the observer point of view, the beams originating from the surface of
the source within the range of polar angles 0 ≤ θ ≤ θλ will be occulted by the
cloud, and those in the annulus θλ ≤ θ ≤ π/2 will by unocculted. From the
fundamental theorem of calculus, Eq. 5.2 can be expressed as the sum

Fλ = Fu
λ + F t

λ, (5.5)

where Fu
λ is the observed flux from the unocculted sight lines and F t

λ is the
observed transmitted flux, i.e., the flux comprising photons from the sight lines
passing through the intervening absorption cloud that were not absorbed. The
transmitted flux is,

F t
λ =

R2
s

D2

∫ 2π

0

∫ θλ

0
Iλ(Rs) exp {−τλ} cos θ sin θ dθ dφ

= sin2θλ
R2

s

D2
Fλ exp {−τλ} ,

(5.6)

and the unocculted flux is

Fu
λ =

R2
s

D2

∫ 2π

0

∫ π/2

θλ

Iλ(Rs) cos θ sin θ dθ dφ

=
[

1 − sin2θλ

] R2
s

D2
Fλ.

(5.7)

Substituting Fu
λ and F t

λ into Eq. 5.5 yields

Fλ =
[

1 − sin2θλ

] R2
s

D2
Fλ + sin2θλ

R2
s

D2
Fλ exp {−τλ} . (5.8)

Note that if the geometeric factor is sin2θλ = 0, then the observed flux is unat-
tenuated, and if sin2θλ = 1, then the observed flux is for a fully occulted source.
Common practice is to define this geometric factor as a wavelength dependent
covering fraction, fc(λ). Clearly, the functional form of the covering fraction
depends upon the assumed geometric configuration; for the above idealized sce-
nario fc(λ) = sin2θλ. Defining F 0

λ = (R2
s/D2)Fλ as the observed flux of an

unocculted source yields the functional form commonly quoted in the scientific
literature,

Rλ =
Fλ

F 0
λ

= [1 − fc(λ)] + fc(λ) exp {−τλ} , (5.9)
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78 CHAPTER 5. ASTRONOMICAL SPECTRA

where the first term on the right hand side represents flux from unocculted sight
lines and the second term represents the flux transmitted through the cloud.
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Figure 5.3: (a) The effective, or measured, optical depth τeff , obtained by inverting the flux
ratio Rλ versus the mean optical depth in the cloud, τλ for various covering fractions, fc(λ).
(b) An example “black–bottomed” absorption profile with τλ " 10 in the profile center for
fc(λ) = 0.50, 0.75, 0.95, and 1.00.

We define the effective optical depth, τeff , as that which is measured directly
from the flux ratio in a spectrum, Rλ = exp{−τeff}. The relationship between
a selected range of τeff , τλ, and fc(λ), as given by Eq. 5.9, is illustrated in
Figure 5.3a. Note that even if the τλ of a partially occulting cloud is very large,
a non–negligible amount of flux can be transmitted to the observer for non–zero
fc(λ).

Consider the scenario for which the flux transmitted through the absorbing
cloud, F t

λ, is vanishingly small; for example when τλ & 10. If the cloud fully
occulted the source, zero flux would be recorded in the center of the absorption
profile (such a profile is often referred to as being “black bottomed”). However,
in the case of partial covering, when F t

λ = fc(λ) exp {−τλ} ' 0, Eq. 5.9 yields
Rλ = 1−fc(λ). In Figure 5.3b, an example absorption profile from a cloud with
τλ & 10 in the absorption profile center is illustrated for fc(λ) = 0.50, 0.75,
0.95, and 1.00 (full occultation). Note, that for a lone absorption profile that
would have a “black–bottomed” core in the case of unity covering factor, the
covering fraction can be read directly from Rλ and τeff can be easily computed;
however, τλ cannot be determined.

5.2 Column Density

An astronomical spectrum is the recording Iλ/I0
λ = exp {−τλ}. As such, the

optical depth at each wavelength is the only quantity from which the physical
conditions of the absorbing gas can be deduced. Upon substitute of Eqs. 4.25
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5.2. COLUMN DENSITY 79

and 4.35 into Eq. 4.37, the optical depth is expressed

τλ =

∫ L

0

[

∑

ijk

nijk(s) αijk(λ)

]

ds, (5.10)

where nijk is the number density of atoms of species k that are in one of all
possible ionization stages, j, and excitation states, i, αijk(λ) is the atomic
absorption cross section at wavelength λ, ne(s) is the density of free electrons,
and where we have ignored scattering.

Thus, at first glance, it would seem impossible to deduce the physical state
of the absorbing gas from the measured optical depth since there is degeneracy
between the various possible combinations of all the nijk(s) αijk(λ); it is a prob-
lem of hundreds of unknowns combined to give a single known. Fortunately, as
illustrated in Figure 4.7a, the absorption cross sections for bound–bound tran-
sitions are highly peaked over an extremely narrow wavelength range, on the
order of ∆λ ' 10−4 Å. Thus, once an observed absorption profile is “identified”,
meaning that it is known to be due to a given electron transition from a given
species in a given ionization and excitation state, then Eq. 5.10 collapses to a
single term for the relevant wavelength range,

τλ =

∫ L

0
n(s) α(λ) ds, (5.11)

where n(s) is the number density of the relevant absorber as a function of the
line of sight location, α(λ) is the cross section for the relevant interaction, and
where we assume there is no scattering contribution to the attenuation over the
wavelength range of the feature. Since α(λ) is based upon atomic physics, it is
independent of line of sight position and can be factored out of the integral,

τλ = α(λ)

∫ L

0
n(s) ds (5.12)

Defining the column density, N , as the number density of absorbers integrated
along the line of sight path length,

N =

∫ L

0
n(s) ds, (5.13)

which has unit [atoms cm−2], we obtain the simplified result that the optical
depth is the product of the column density and the absorption cross section
[cm2],

τλ = Nα(λ). (5.14)

Eq. 5.14 is extremely powerful; the measured optical depth (albeit over a
narrow wavelength range) is now reduced to a single number, the column density
of the absorbing atomic species giving rise to the absorption profile. Thus,
because the functional form of α(λ) is known, N can be directly determined
from the observed spectrum according to

Fλ = F 0
λ exp {−Nα(λ)} . (5.15)
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80 CHAPTER 5. ASTRONOMICAL SPECTRA

This is the most commonly applied form of the solution to the transfer equa-
tion under the conditions of a background emitting source observed through an
absorbing cloud (no internal emission and unity covering fraction).

5.3 Doppler broadening

Observed absorption profiles are significantly broader than the natural widths
of the atomic absorption cross sections. The additional broadening is due to the
thermal (and/or turbulent) motions of the atomic absorbers.

5.3.1 Observed shifts

Consider a single absorbing atom in motion within an absorbing cloud. The
line of sight component of the motion of this atom with respect to the source
results in a wavelength shift in the absorption cross section, α(λ), in the observer
reference frame.

Let the velocity vector of a single atom be v = vx î+vy ĵ+vzk̂ with magnitude
v2 = v2

x + v2
y + v2

z , which is known as the particle speed. Assume that both the
absorbing cloud and the observer are at rest with respect to the source. The
line of sight samples the absorbing cloud in a single spatial direction; thus, the
observed line of sight velocity component is the dot product of the line of sight
propagation direction of the beam, ŝ, and the velocity vector of the atom,

vo = −v · ŝ, (5.16)

where the negative sign provides the convention vo > 0 for components toward
the source and away from the observer and vo < 0 for components away from
the source and toward the observer. A scematic of the geometric realtionship
between v, ŝ, and vo is illustrated in Figures 5.4a and 5.4b. Note that ŝ is the
vector direction from source to observer.

As illustrated in Figure 4.7, the absorption cross section for bound–bound
transitions are extremely narrow, with ∆λ ' 10−4 Å. Due to the Doppler shift,
absorbing atoms will “see” all source photon wavelengths shifted by the amount
∆λ/λ = −vo/c = (v · ŝ)/c (consider the source velocity from the atom’s point
of view). If the wavelength at the narrow peak of the absorption cross section
is λr in the rest–frame of the atom, then in the frame of the absorbing cloud
and the observer, the observed peak will have wavelength

λo = λr

(

1 +
vo

c

)

. (5.17)

As illustrated in Figure 5.4c, for vo > 0 (velocity component toward source), the
observed wavelength of the peak, λo, is shifted redward relative to λr. And, as
illustrated in Figure 5.4d, for vo < 0 (velocity component toward observer), λo is
shifted blueward relative to λr. An extremely tiny vo will result in a significant
shift of the absorption cross section peak relative to its width. If λr ∼ 1000 Å,
typical of atomic bound–bound transitions, a vo on the order of 0.03 km sec−1

results in an observed shift of the cross section equal to its full width.
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Figure 5.4: (a) Schematic of the line of sight velocity component, vo, of an atom with
velocity vector v for which the component is positive and away from the observer (in the
negative ŝ direction). (b) Same as panel a, but for a negative vo due to motion toward the
observer. (c) Illustration of the wavelength shift in the absorption cross sections for neutral
hydrogen in the ground state calculated from Eq. 5.17. The dashed curve is the rest–frame
cross section, peaking at λr = 1215.6701 Å. The solid curve is the observed shift corresponding
to the schematic in panel a, for vo = +0.1 km sec−1. (d) Same as for panel c, but for the
schematic in panel b for vo = −0.1 km sec−1. For the example velocity, which is quite small,
the observed shift of ∆λ = 0.0004 Å is roughly four times the full width of the cross section.

5.3.2 Broadening in an isothermal medium

Since each atom shifts the absorption cross section in proportion to its line of
sight velocity according to Eq. 5.17, it follows that there will be a distribution of
observed velocity shifts in the absorber cross sections and this distribution will
depend upon the fractional number of absorbers in a given velocity interval, dv.
This “Doppler broadening” modifies the optical depth as a function of observed
wavelength.

It is always possible that the line of sight velocity of a given absorbing atom
depends upon its location in the cloud (such as in a galactic wind or accretion
structure). In such cases, the density of absorbing atoms at a given velocity may
also dependent on location in the cloud. In simpler cases, it may be reasonable
to assume that the absorber velocities are not dependent upon location, but only
upon the temperature of the gas. Regardless of the complexity of the scenario,
the distribution of wavelength shifts of the absorption cross sections will depend
upon a model of the gas kinematics.

Here, we illustrate the influence of a simple distribution of velocities on the
redistribution of absorption with observed wavelength. We assume an isother-
mal cloud in which the density and velocity of the absorbing atoms is indepen-
dent of location. This scenario commonly applied. For a non–relativistic isother-
mal gas, the distribution of particle velocities is the well–known Maxwellian
distribution.

For purpose of illustration, assume ŝ = k̂, that line of sight vector is parallel
to the +z direction, the direction to the observer. Consider an isothermal gas
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82 CHAPTER 5. ASTRONOMICAL SPECTRA

cloud comprising particles of atomic species k having mass m. If nk(vz) dvz is
the number density of particles of species k in the velocity interval vz → vz+dvz,
and nk is the number density of all particles of species k, then the fraction within
the interval vz → vz + dvz is written f(vz) dvz = [nk(vz)/nk] dvz, which has the
functional form

f(vz) dvz =
( m

2πkT

)1/2
exp

{

−mv2
z

2kT

}

dvz , (5.18)

where kT is the product of the Boltzmann constant k [erg K−1] and the tem-
perature, T [K]. The normalization is

∫ ∞

0
f(vz) dvz = 1. (5.19)

Since vz was arbitrarily (and conveniently) chosen to be the velocity along the
line of sight to the observer, we have vo = vz . Thus, Eq. 15.1 describes the
observed line of sight component of the velocity distribution, f(vo) dvo.

The distribution of particle speeds, f(v) dvxdvydvz = [nk(v)/nk] dvxdvydvz

in the interval vx → vx + dvx, vy → vy + dvy , and vz → vz + dvz, is given by

f(v) dvxdvydvz = f(vx)f(vy)f(vz) dvxdvydvz (5.20)

where v2 = v2
x + v2

y + v2
z . The cartesian velocity element dvxdvydvz containing

the velocity interval vx → vx +dvx, vy → vy +dvy, and vz → vz +dvz is replaced
in Eq. 15.3 by the spherical element 4πv2dv, which can be visualized as a shell
of thickness v → v + dv. The distribution of particle speeds is then

f(v) dv =
( m

2πkT

)3/2
exp

{

−mv2

2kT

}

4πv2dv, (5.21)

with
∫ ∞

0
f(v) dv = 1. (5.22)

Eqs. 15.1 and 15.5 are the well–known Maxwellian velocity and speed distribu-
tion functions, respectively.

The observed line of sight velocity distributions (vo, Eq. 15.1) are illustrated
in Figure 15.2a for hydrogen at three temperatures, illustrating that the distri-
bution dispersion increases and the amplitude decreases with increasing T . In
Figure 15.2b, the dependence with species atomic mass is shown for the common
elements hydrogen, carbon, magnesium, and iron at T = 50, 000 [K]. Note that
the distribution dispersion decreases and the amplitude increases with increas-
ing particle mass. The Maxwellian speed distributions (Eq. 15.5) are shown in
Figures 15.2c and 15.2d, respectively for hydrogen at three temperatures and
for hydrogen, carbon, magnesium, and iron at T = 50, 000 [K].

For the Maxwellian speed distribution, the most probable speed, v0, the
average speed, 〈v〉, and the RMS speed, vRMS, are

v0 =

(

2kT

m

)1/2

〈v〉 =

(

8

π

kT

m

)1/2

vRMS =

(

3kT

m

)1/2

. (5.23)
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Figure 5.5: The Maxwellian distribution of particle speeds and one–dimensional velocity
components. (a) The distribution of the observed line of sight component of velocity, vo, for
hydrogen at T = 10, 000, 25, 000, and 50, 000 [K]. (b) The distribution of vo for hydrogen,
carbon, magnesium, and iron at T = 50, 000 K. (c) The distribution of particle speeds, v,
for hydrogen at T = 10, 000, 25, 000, and 50, 000 [K]. (d) The distribution of v for hydrogen,
carbon, magnesium, and iron at T = 50, 000 [K].

For a given T , note that heavier particles have smaller v0, 〈v〉, and vRMS. In
terms of the most probable speed, v0, Eq. 15.1 can be written

f(vo) dvo =
1√
πv0

exp

{

−
(

vo

v0

)2
}

dvo, (5.24)

where v0 can now be interpreted as
√

2 σ, where σ is the standard deviation
of a unit area Guassian distribution. Note that it is assumed that there is
no systemic line of sight velocity to the ensemble of atoms, i.e., vsys = 0. If
this assumption were relaxed, then all appearances of vo in Eq. 5.24 would be
replaced by the velocity difference ∆v = vo − vsys.

Via the Doppler shift, ∆λ/λ = v/c, the observed distribution of the wave-
lengths of the absorption cross section peaks, λr, will obey the functional form
of Eq. 5.24, but with

√
2 σ written

∆λD =
v0

c
λr =

λr

c

(

2kT

m

)1/2

, (5.25)

which is known as the characteristic Doppler width. Employing the principle of
the Doppler shift, with ∆λ = λ − λr , and substituting Eq. 5.25 into Eq. 5.24,

c© Chris Churchill (cwc@nmsu.edu) Use by permission only; Draft Version – December 30, 2009



84 CHAPTER 5. ASTRONOMICAL SPECTRA

we obtain the observed wavelength shift distribution,

f(∆λ) dλ =
1√

π∆λD

exp

{

−
(

∆λ

∆λD

)2
}

dλ. (5.26)
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Figure 5.6: The Doppler shift distribution due to the Maxwellian distribution of the observed
line of sight velocity distribution of absorbers. (a) The distribution of ∆λ for the ground
state neutral hydrogen transition Lyα λ1215 at T = 10, 000, 25, 000, and 50, 000 [K]. (b)
The distribution of ∆λ at T = 50, 000 [K] for the selected transitions: neutral hydrogen (H i

λ1215), triple ionized carbon (C iv λ1548), single ionized magnesium (Mg ii λ2796), and single
ionized iron (Fe ii λ2600).

Selected examples of observed line of sight wavelength distributions for the
peak wavelengths of the absorber cross sections are illustrated in Figure 5.6 as a
function of ∆λ = λ − λr. Because ∆λD is proportional to λr, each distribution
function is specific to a given absorption transition. In Figure 5.6a, the observed
distribution of ∆λ is shown for the Lyα λ1215 neutral hydrogen transition at
T = 10, 000, 25, 000, and 50, 000 [K]. In Figure 5.6b, the observed distribution is
shown for four transitions commonly found in astronomical spectra (see figure
caption).

Note that the amplitude of the observed velocity distribution (Eq. 5.24)
scales with (m/T )1/2 and the width scales as the inverse, (T/m)1/2. However,
the amplitude of the observed wavelength distribution (Eq. 5.26) scales with
λ−1

r (m/T )1/2 and the width scales as the inverse λr(T/m)1/2. Figures 15.2b
and 5.6b clearly illustrate these differences.

The full widths of the thermal distributions (Figure 5.6) are a factor of few×
103 broader than the widths of the atomic absorption cross sections (Figure 4.7).
Therefore, the thermal conditions of the gas can have a dominating influence
on the resulting wavelength dependence of the optical depth, τλ, and therefore
the “shape” (depth and width) of absorption lines.
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5.4 The total absorption cross section

Due to thermal broadening, the expression for the optical depth as given by
Eqs. 5.11 and 5.14,

τλ =

∫ L

0
n(s) α(λ) ds = Nα(λ), (5.27)

must be modified to account for the distribution of wavelength shifts in the
narrow and highly peaked absorption cross section, α(λ). The total absorption
cross section for a given transition is obtained via convolution of the atomic
absorption cross section with the probability distribution of observed wavelengh
shifts,

σ(λ) = α(λ) ⊗ f(∆λ). (5.28)

Note that f(∆λ), as written in Eq. 5.26, is a true probability function and pro-
vides the probability that the atomic absorption cross section will be shifted
an amount ∆λ. The probability is, in simple terms, given by the fraction of
atomic absorbers that have line of sight velocity vo such that they see the in-
coming radiation Doppler shifted by ∆λ. The total absorption cross section,
σ(λ), is actually a function of several quantities: (1) the mass of the absorbing
atomic species, m, (2) the gas temperature, T , and (3) the atomic constants
(see § 16.1.2) that dictate the shape and amplitude of α(λ).

The convolution to obtain σ(λ) as a function of wavelength requires evalu-
ating a series of integrals, each centered on a given λ

σ(λ) =

∫ ∞

0
α(λ′)f(λ′ − λ) dλ′, (5.29)

over the variable λ′, which samples the wavelength dependence of the distribu-
tion function, f(∆λ). Visualize Eq. 5.29 as the process of centering the peak of
f(∆λ) at a given λ, integrating over λ′, and then repeating at each λ. As long
as there is no net systemic motion to the ensemble of absorbing particles, the
resulting σ(λ) will peak at λr, the peak of the atomic absorption cross section.
Eq. 5.29 simply weights α(λ′) by f(λ′ − λ) dλ′ at each interval λ′ → λ′ + dλ′.

Returning to the expression of the optical depth as formulated in Eq 5.11,
with inclusion of the isothermal broadening we have

τλ =

∫ L

0
n(s) σ(λ) ds = Nσ(λ), (5.30)

where N is the column density of the absorbing atomic species for the targeted
transition in the spectrum. The observed flux across the profile of a single
feature in an astronomical spectrum can now be written in terms of the total
absorption coefficient

Fλ = F 0
λ exp {−Nσ(λ)} . (5.31)

From Eq. 5.31, both the column density of the absorbing atomic species and the
Doppler width (and therefore gas temperature) can be directly deduced from the
observed flux in an astronomical spectrum. As we shall illustrate in subsequent
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discussion (see § 16.3), there can be degeneracy between N and T in certain
regimes of N .

Although the absorption cross sections for bound–free (ionization) absorp-
tion features, as illustrated in Figure 4.7b, can extend over a larger wavelength
range, it is still possible to employ Eq. 5.31 to obtain the column density of atoms
undergoing ionization. In fact, since the absorption cross section for bound–free
absorption varies smoothly over a very broad wavelength range, the convolution
given by Eq. 5.29 is effectively unnecessary. The widths of the f(∆λ) are on
the order of 0.1 Å (see Figure 5.6), whereas the bound–free cross sections vary
smoothly over ∼ 1000 Å (see Figure 4.7).

5.5 Recap of assumptions

Ultimately, the functional form of the integrand of Eq. 5.30 is based upon a
model of the absorbing gas cloud. The Maxwellian distribution of observed
line of sight absorbing atom velocities is one such model; in fact, it is a very
simplistic model based upon assumptions designed to simplify the radiative
transfer through an absorbing medium. An isothermal model cloud must be
assumed if σ(λ) is to be factored out of the optical depth integral over s, the
line of sight path. As such, the application of Eq. 5.31 requires the assumption
of no spatial variation in the gas temperature along the line of sight.

In principle, the integral for the optical depth (Eq. 5.30) can be very complex.
For any absorbing cloud model in which the total absorption cross section is
expressed as a function of s, it will be impossible to factor σ(λ) out of the
integral and therefore neatly write the optical depth in terms of column density,
i.e., τλ ,= Nσ(λ). If systematic kinematics, bulk flows, and/or turbulent motions
are to be included in the optical depth model of the absorbing cloud, then the
distribution function, f(∆λ), may be difficult to formulate, difficult to convolve
with the atomic absorption cross section (Eq. 5.29), difficult to integrate over
the path length (Eq. 5.30), or possibly all three difficulties apply. Moreover, a
model might be constructed in which the density of absorbing atoms, n(s), is a
function of the gas kinematics.

In any event, Eq. 5.31 is the most commonly utilized expression relating the
observed flux to the optical depth for the case of a purely absorbing intervening
gas cloud. To emphasize that the derivation of Eq. 5.31 has been based upon
several assumptions, we review them here:

• an unresolved, spherical isotropic emittng source of radius, Iλ(Rs), where
otherwise Iλ(R, φ, θ) with R = R(φ, θ)

• an absorbing cloud intervening to the source that fully occults the source

• neglibile emission and neglibile scattering within the intervening absorbing
cloud
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• a constant optical depth, τλ = χ̄λ 〈L〉, across the beam cross section (so
that the absorption is independent of the point of origin of a beam element
emitted from the source)

• atomic absoption cross sections that depend only upon the atomic physics,
i.e., are independent of the local physical environment [under certain con-
ditions α(λ) can be modified, such as in the presence of magnetic fields or
high gas pressure]

• an isothermal absorbing gas cloud, so that the total absorption cross sec-
tion, σ(λ), is independent of line of sight location through the cloud [al-
lowing σ(λ) to be factored out of optical depth integral (Eq. 5.30)]

As each of these assumptions is relaxed, either the solution to the radiative
transfer and/or the expression for the optical depth become progressively more
complex. Eq. 5.31 is employed for most all applications in the astronomical
literature.

In practice, greater complexity is applied when the structure of a global
absorbing phenomenon is being studied or the kinematics of such a structure
is being studied. Examples of applications for which the models of the radia-
tive transfer and/or optical depth are more complex include intergalactic gas
structures undergoing cosmological expansion (e.g., Gunn & Peterson, 1965),
rotating galactic halos with density gradients (e.g., Weisheit, 1978), infalling
clouds into galactic halos and rotating galaxy disk kinematics (e.g., Lanzetta
& Bowen, 1992) and outflowing winds associated with the background source
itself (e.g., Vilkovoiskij & Irwin, 2001).

The reader is also refered to the books on stellar atmospheres by Mihalas
(1978) and by Gray (1992). These authors, especially Mihalas, develop formal-
ism of the optical depth for absorption models that incorporate systematic gas
dynamics.

5.6 Spectrophotometry and Magnitudes

In certain applications, it may be of interest to measure the observed flux, Fλ,
summed over a desired wavelength range. This converts the energy collected
per unit area per unit time per unit wavelength to energy collected per unit
area per unit time. The flux per unit wavelength, Fλ is sometimes referred to as
the flux density, whereas the quantity F (λ) = λFλ is referred to as the flux (in
this text, this distinction of nomenclature is applied only when the context of
discussion requires it; the subscript always implies flux density). The flux over
a selected wavelength range is written

F =

∫ λ+

λ−

λFλ dλ, =

∫ λ+

λ−

F (λ) dλ, (5.32)

where λ− and λ+ are the lower and upper limits of the wavelength range.
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Alternatively, the flux density and flux can be measured or converted to
frequency units, where F (ν) = νFν , where the frequency flux density, Fν , has
units of [erg s−1 cm−2 Hz−1]. The relationship between Fν and Fλ derive from
energy conservation and the relationship c = νλ. We have

Fλdλ = Fνdν, Fλ =
c

λ2
Fν . (5.33)

In the application of Eq. 5.33, to preserve units between Fλ and Fν , the factor
dν/dλ = c/λ2 is computed in “mixed” units. Writing dν/dλ = (c/λ)/λ, we
compute c/λ in cgs units with the final λ in [angströms].

In imaging, it is common that the observed flux is measured using a fixed
filtered band pass. It is also common practice that the filter is a member of
a predetermined suite of filters comprising a photometric system (see below).
These photometric systems are calibrated using the magnitude system. Mag-
nitudes are unitless numbers on an inverted logarithmic scale that are based
upon flux ratios. The zero points are defined by the fluxes of standard objects
accounting for the filter band–pass response of the filters.

In cases where spectroscopic data are in hand but the magnitude of the
source is desired in a certain band pass, one can perform spectrophotometry. If
the response function of the filter with band pass y is Ry(λ) over the wavelength
range λy− to λy+ , then the measured band pass flux (modulated by the filter
band pass) is

Fy =

∫ λy+

λy−

Ry(λ)Fλ dλ . (5.34)

The response functions are the probability of transmission at each wavelength
and obey

∫ λy+

λy−

Ry(λ) dλ = 1, (5.35)

where the integration is take over a broad enough wavelength range such that
the filter response vanishes, i.e., Ry(λ) = 0 for λ = λy− and λ = λy+ .

5.6.1 Apparent magnitude

The flux density measured on the magnitude scale is defined by

mλ = −2.5 logFλ mν = −2.5 logFν (5.36)

As such, magnitudes provide an alternative scale with which flux densities can
be quoted. It is not uncommon to see the flux densities of stars and other
sources presented in mλ or mν .

The band–pass apparent magnitude is defined using the ratio of the band–
pass flux (Eq, 5.34) of the object to that of a standard source. In a band pass
y,

my = −2.5 log

{

Fy

F s
y

}

(5.37)
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where Fy is the band pass y flux of the object and F s
y is band pass y flux of the

standard source. Note that if the object band pass flux equals the source band
pass flux, i.e., Fy = F s

y , then my = 0. Thus, the standard source provides the
zero point of the apparent magnitude scale. Also, note that my decreases as
the ratio Fy/F s

y increases. Objects with Fy > F s
y have my < 0 and those with

Fy > F s
y have my > 0.

Flux ratios

Apparent magnitudes provide a simple relationship in which the ratio of the
band pass fluxes of two distinct objects can be determined by the difference of
their apparent magnitudes. Through the definition of magnitudes (Eq. 5.37),
we have

m(1)
y − m(2)

y = −2.5 log

{

F (1)
y

F s
y

}

+ 2.5 log

{

F (2)
y

F s
y

}

= −2.5 log

{

F (1)
y

F (2)
y

}

, (5.38)

which can be inverted to obtain,

F (1)
y

F (2)
y

= 10−0.4[m(1)
y −m(2)

y ]. (5.39)

Note that every integer difference in the magnitudes of two objects corresponds
to a factor of 10−0.4 = 2.5 in their flux ratios. The term “dex” is often used; it
is shorthand for “decade” on the logarithmic scale. For instance, the flux ratio
of ±2.5 corresponds to ∓0.4 [dex] on the magnitude scale.

5.6.2 Photometric systems

There are two main photometric systems employed in the astronomical sciences,
the Vega system and the AB system. There are a plethora of filter suites, in-
cluding the Johnson–Cousins, Washington, Gunn, Sloan Digital Sky Survey,
Hipparcos–Tycho, and Hubble Space Telescope WFPC–2 and 3, and ACIS sets.
For a general review see Bessell (2005). For brevity, we employ the Johnson–
Cousin UBV RI system for purposes of illustration. The UV BRI filter response
functions (renormalized to a peak transmission of unity) are illustrated in Fig-
ure 5.7. For example, the y = V (“visual” band) filter has an effective central
wavelength of 5500 Å with a band pass ranging from 4700–7400 Å.

Vega system

The Vega system is calibrated using the flux density of the A0 V star Vega
(or sometimes the mean of a sample of unreddenned A0 V Pop I stars). The
flux density of Vega (Oke, 1990)1 is presented in Figure 5.7 as the thin solid

1The electronic data were obtained from the on–line archive of optical and UV spec-
trophotmetric flux standard stars made available by the European Southern Observatory.
(http://www.eso.org/sci/observing/tools/standards/spectra/)
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curve (with absorption features). Because A0 V stars do not have a flat flux

density, the calibration band pass flux, F (Vega)
y is different for each band pass. For

additional information see Oke & Gunn (1983); Bessell (1990). For information
on the Sloan filter suite and calibration, see Smith et al. (2002).
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Figure 5.7: (a ) The flux densities, Fλ, of Vega (thin solid curve) and the hypothetical
AB source (dashed curve). (b ) The flux densities, Fν , of Vega (thin solid curve) and the
hypothetical AB source (dashed curve). Superimposed are the Johnson–Cousins UBV RI filter
response curves normalized to unity at their peak transmissions. The differences between the
calibration magnitude of Vega and that of the AB magnitude are listed in Table 5.1.

AB system

For AB magnitudes, there is no physical standard source, but simply a definition

of a hypothetical source with F (AB)
ν = 3.63 × 10−20 [erg s−1 cm−2 Hz−1] for all

ν (a flat frequency flux density distribution). This is not a flat flux density in

wavelength, F (AB)
λ = 0.1092/λ2 [erg s−1 cm−2 Å−1] (where λ is [angströms]).

The AB flux density is presented in Figure 5.7 as the thin dashed curve.
Because Fν is a constant, and the filter responses have unity normalization

(Eq. 5.35), we have F (AB)
y = F (AB)

ν , yielding −2.5 log{3.63×10−20} = 48.60.
Thus, from the definition of apparent magnitude (Eq. 5.37),

my(AB) = −2.5 logFy − 48.60 = −2.5 logFν − 48.60 = mν − 48.60 (5.40)

for all band passes, where mν is the magnitude of the flux density as defined
in Eq. 5.36. Note that Eq. 5.40 (and the constant −48.60) applies only if the
band pass flux is determined using frequency units. As such, AB magnitudes in
frequncy units are equivalent to the flux density magnitude, mν , scaled to the
hypothetical AB source.
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Contrasting systems

In Figure 5.7a, the standard Vega and AB flux density distributions, F (Vega)
λ

and F (AB)
λ , are shown. In Figure 5.7b, F (Vega)

ν and F (AB)
λ are shown. The

Johnson–Cousins UV BRI band pass response curves2 are superimposed (thick
solid curves). Vega is shown as the thin solid curve (which exhibits aborption
features), and the AB source is shown as the smooth dashed curve. The defini-
tion of the AB standard “source” flux density was chosen to give mV (AB) = mV ,
or more precisely

∫ 7400

4700
RV (λ)F (Vega)

λ dλ =

∫ 7400

4700
RV (λ)F (AB)

λ dλ , (5.41)

(or the equivalent integrals over frequency). However, the latest calibration of
Vega yields a difference of 0.044 magnitudes. Note that the flux density curves
are normalized (by definition for AB magnitudes) near the center of the response
curve for the V filter.

In Table 5.1, the central (effective) wavelength, λy , and the band pass width,
∆λy/λy, are listed for the Johnson–Cousins UBV RI filter suite. Also listed are

the values of F (Vega)
ν [erg s−1 cm−2 Hz−1] at νy and F (Vega)

λ [erg s−1 cm−2 Å−1] at
λy. The values of the latter can be visually confirmed by inspection of Figure 5.7.
The last column lists the magnitude difference between the Johnson–Cousins
Vega system and the Johnson–Cousins AB system, my −my(AB) = ∆my , i.e.,
the quantity added to the Johnson magnitude in band pass y to obtain the AB
magnitude in that band pass.

Table 5.1: Vega and AB Magnitude Data

Band pass λy ∆λy/λy F (Vega)
ν F (Vega)

λ ∆my

(y) [Å] [10−20] [10−9]

U 3600 0.15 1.81 3.18 · · ·
B 4400 0.22 4.26 6.60 −0.163
V 5500 0.16 3.64 3.61 −0.044
R 6400 0.23 3.08 2.26 +0.055
I 7900 0.19 2.55 1.23 +0.309

In imaging studies, one measures Fy directly. In spectroscopic studies, Fy

must be computed using Eq. 5.34 from the measured Fλ or Fν . In practice,
imaging studies are almost always more accurate because accurately measuring
the flux spectroscopically is complicated by additional wavelength effects. In
particular, one must be sure that all the light from the object passes through

2Electronic data from ftp://ftp.noao.edu/kpno/filters/4Inch List.html .
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the slit (if the slit is narrower than the seeing disk of the object, then some light
will be lost at the slit).

5.6.3 Absolute magnitude and luminosity

The absolute magnitude in band pass y, My, is defined as the apparent mag-
nitude that an observer would measure at a distance of D = 10 [pc] from the
source. Whereas apparent magnitude differences relate band pass flux ratios,
absolute magnitude differences relate band pass luminosity ratios. Thus, in a
sense, My is a surrogate for band–pass luminosity through the normalization of
the band–pass flux to a standardized distance. To account for the finite band
pass, the luminosity density, Lλ, is employed,

L(λ) = λLλ, (5.42)

where L(λ) is in [units erg s−1], and Lλ is in units [erg s−1 Å−1]. The coversion
from Lλ to Lν follows the relations for the flux density as given in Eq. 5.33.
The integrated luminosity in the band pass is

Ly =

∫ λy+

λy−

Ry(λ)λLλ dλ . (5.43)

The relationship between the flux density and the luminosity density is

Fλ =
Lλ

4πD2
. (5.44)

From Eqs. 5.34, 5.37 and 5.44, the apparent magnitude of an object observed
in band pass y can be written in terms of luminosity

my = −2.5 log

{

∫ λy+

λy−

Ry(λ)
λLλ

4πD2
dλ

}

+ 2.5 logF s
y . (5.45)

By definition, the absolute magnitude is obtained by setting D = 10 [pc],

My = −2.5 log

{

∫ λy+

λy−

Ry(λ)
λLλ

4π(10 pc)2
dλ

}

+ 2.5 logF s
y , (5.46)

The difference of the above two equations, my − My, is called the distance
modulus, denoted DM,

DM = 5 log

{

D

10 pc

}

= 5 log D − 5, (5.47)

where the distance to the object, D, is expressed in [parsecs]. Thus, if the appar-
ent magnitude and distance to an object is measured, the absolute magnitude
can be computed from

My = my − DM, (5.48)
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Often, for a population of object (such as galaxies, etc.), there is a measured
characteristic absolute magnitude, M∗

y , for the band pass, which, according
to Eq. 5.46, corresponds to a characterstic luminosity for the band pass, L∗

y.
This characteristic luminosity might be, for example, the average band pass
luminosity for a population of object. Through the definition of magnitudes
(Eqs. 5.37 and 5.46), and applying steps analagous to those obtained to derive
Eq. 5.38, we have

My − M∗
y = −2.5 log

{

Ly

L∗
y

}

, (5.49)

which can be inverted to obtain the ratio of the luminosity of the object to the
characteristic luminosity of the population,

Ly

L∗
y

= 10−0.4[My−M∗

y ]. (5.50)

5.6.4 Cosmological Sources

The above treatment of the apparent and absolute magnitudes presupposes that
the source object is in the same cosmological reference frame as the observer.
Cosmological objects can have substantially redshifted spectral energy distribu-
tions, such that the flux density observed in band pass y at the observer does not
correspond to the same band pass in the frame of the source. The cosmological
effects altering the observed flux density of a redshifted source are discussed
in Chapter 14. These effects require that a corrective term be applied to the
band pass flux integrals in order to deduce the apparent and absolute magni-
tude in the rest frame of the object. These corrections, called K–corrections,
are discussed in § 14.7.

5.7 Atmospheric attenuated flux

The quantity Fλ is the observed flux incident upon the upper atmosphere of
Earth. Before this flux is recorded for subsequent analysis, the beam first suf-
fers wavelength dependent attenuation while passing through the atmosphere.
We quantify the atmospheric transmission at wavelength λ as εA

λ, which equals
the ratio of the flux entering the telescope to the observed flux entering the
upper atmosphere, Fλ. The form of εA

λ can be complex and include atmospheric
absorption lines and bands, which are commonly known as telluric features.
Furthermore, the magnitude of εA

λ is proportional to the path length through
the atmosphere.

Defining atmospheric attenuated flux as FA
λ ,

εA
λ =

FA
λ

Fλ
= exp{−τA

λ } , (5.51)

where τA
λ is the optical depth of the atmosphere. The optical depth increases

with the zenith angle, denoted z, which is the angle of the line of sight to the
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source measured from the local zenith of the telescope. For a constant density
plane parallel model of the atmosphere,

τA
λ (z) = τA

λ (0) sec z, (5.52)

where τA
λ (0) is the atmospheric optical depth at the zenith (z = 0). A commonly

used term to quantify the attentuation through the atmosphere is the “airmass”,
defined as the ratio of the optical depth toward the zenith to the optical depth
at zenith angle z,

airmass =
τA
λ (z)

τA
λ (0)

= sec z. (5.53)

Note that the sec z dependence applies only under the assumption of a constant
density plane parallel atmosphere; it applies well for small z. Higher accuracy
approximations can be found in Kasten & Young (1989). Technically, airmass
of unity is defined at sea level, but it is common that this normalization is not
included in the definition so that airmass is measured with respect to the local
elevation of the telescope facility. Thus, the zenith sightline is referred to as
“unit airmass”. In the most general form, we have

εA
λ(z) = exp{−τA

λ (z)} . (5.54)

Thus, the flux entering the telescope at angle z from the zenith, which we
call the “attenuated flux”, is then given by

F̃A
λ = εA

λ(z)Fλ = εA
λ(z)

R2

D2
Fλ exp {−τλ} = F̃A0

λ exp {−τλ} , (5.55)

where τλ is the optical depth of an absorption feature in the observed flux spec-
trum and the “attenuated continuum flux” (the attenuated flux in the absence
of an intervening absorbing cloud (τλ = 0) is

F̃A0
λ = εA

λ(z)
R2

D2
Fλ = εA

λ(z)
R2

D2
π Iλ. (5.56)

As we will discuss in detail in Chapter 6, further modification to the final
recorded flux occurs as the light interacts with the optical elements of the tele-
scope and the spectrograph before the light beam impinges upon the recording
apparatus, i.e., the detector. Fortunately, all these attenuations and modifica-
tions are multiplicative, so that one can recover the observed flux, Fλ, via a
process known as flux calibration (see Chapter 7).
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