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formed in LTE and some not; indeed, the contribution from deep levels in a stellar
atmosphere may be in LTE but the contribution from high levels may deviate
markedly from L'TE, for the density is lower at higher levels and the optical depth
to the edge of the aitmosphere is small, so photons readily escape, reducing the
level populations below their LTE values.

One has to try to estimate whether an LTE solution will be adequate for
a particular purpose or what approximation to a full non-LTE solution might
serve. In radio astronomy in particular one often uses the excitation temperature
which is the temperature that would be needed to give the relative populations of
the upper and lower levels of a transition if Boltzmann's equation held. If LTE
holds, then the excitation temperature equals the kinetic temperature. A radi-
ation field can often be characterized by a radiation temperature, which gives
a Planck function approximating to the actual distribution of radiation. If the
radiation field comes from a star at some distance, then the distribution of the field
with frequency may be roughly Planckian at the effective temperature of the star,
but the magnitude is reduced by a factor roughly proportional to the inverse
square of the distance from the star called the dilution factor. If radiative processes
are dominant and there is no dilution, then the excitation temperature will tend
towards the radiation temperature.

If we now look particularly at lines, the concept of saturation is very important.
Consider a thin cloud of gas with no continuous emission and some particular
line transition which will, of course, give rise 1o an emission line. If we increase the
number of atoms in the line of sight through the cloud, the line sirength will at
first increase in proportion to the number of atoms along the line of sight, but as
the optical depth through the cloud increases some of the emission will be
absorbed before it can escape from the cloud. and the line strength will increase
more slowly than the number of atoms along the line of sight. Eventually
mncreasing emission witl be balanced by increasing absorption, the line strength
will cease to grow, and we say that the line is saturated. Emission and absorption
will balance to give an emission intensity equal to the Planck function evaiuated
at the line frequency and the excitation temperature of the line. The line is now
optically thick. In general there will also be emission by continuum processes at
all wavelengths, but at line wavelengths we have both continuum and line
emission, so the line stands out above the continuum. In stars the continuum is
optically thick, and if steilar atmospheres were isothermal both line ptus continy-
um and continuum would radiate at the saturated strength and so the line would
beinvisible. However there is a temperature gradientin stellar atmospheres so the
increased absorption coefficient at frequencies where we have both line and
continuum opacity compared with that at neighbouring frequencies where we
have continuum absorption alone means that optical depth 1 comes higher in the
atmosphere at line frequencies. Since the temperature is lower higher up, the
source function is usually lower, and the spectrum therefore looks less bright at
the line frequency and we have an absorption line, At first the depth of such a line

increases as the number of atoms capable of absorbing the line increases, but
eventvally we are looking at the top of the atmosphere and the line can become no
deeper so again the line saturates.

We have ignored the fact that spectral lines are not monochromatic and have
a natural breadth in frequency which is often swamped in astrophysical spectra
by broadening due to motions in the gas (Doppler broadening) or by broadening
due to interactions with other atoms, ions and electrons (collisional or pressure
broadening). Not only is broadening of interest in itself, giving information on
temperature, turbulence, rotation and pressure, but the line broadening affects
saturation, for the centre of a line may be saturated while the wings are
unsaturated and still growing with the number of atoms in the line of sight. Thus
the frequency or wavelength integrated strength of the line depends on the line
profile and the broadening mechanism.

In the last seven chapters we will apply some of these ideas to various
astrophysical environments.



Thus the radiation field is given by Planck’s equation which {or frequency v and
temperature T is
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where his Planck’s constant, ¢ is the speed of light and k is Boltzmann’s constant,
here and throughout this book. The radiation field is, of course, isotropic. The
source function in complete thermodynamic equilibrium is also given by Planck’s
equation. In complete equilibrium, the number of particles of mass M travelling
with velocities between V and ¥V + dV, is given by Maxwell's equation:

.g 3i2
2akT

which is needed in estimating collisional rates. The fraction of particles of
a particular atomic, ionic or molecular species excited to level n with excitation

energy E, above the ground state (the energy difference between the level and the
ground state) is given by Boltzmann’s equation:
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where g, Is the statistical weight of the ath level, i.e. the number of degenerate
sub-levels in the nth level and U is called the partition function and serves to
ensure that the populations N, of ali the levels add up to the total population N of
the species concerned. Finally in complete equilibrium the ratio of the number of
particles in a particular stage of ionization to the number in the next lower stage
of ionization is given for an ionization potential I {the energy needed to remove an
electron from the lower stage of ionization) by Saha's equation :

Nihigher stage)N, (2mm kT\** 2U(higher stage) . 14
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where N, is the number of electrons per unit volume and m, is the mass of the
electron. A similar equation holds for the dissociation of a molecule, where for
a diatomic molecule AB one replaces N(lower) by N(AB)and N(higher}and N by
N(A) and N(B), m, becomes the reduced mass of the molecule mamy/m, s, and
I becomes the dissociation energy D, with appropriate changes to the partition
functions.

Complete thermodynamic equilibrium cannot occur in a stellar atmosphere
because it would require the temperature to be the same everywhere with no
temperature gradient to drive an outward flow of radiation, and because it would

require an isotropic radiation field which again would imply no net flow of
radiation. However, one can sometimes treat conditions locally as being charac-
terized by a single local temperature which in Planck’s equation gives the source
function, in Saha's equation gives the ionization and in Boltzmann's equation
gives the excitation, although the radiation field will not be precisely Planckian at

‘the local temperature, and the ‘single’ temperature at which thermodynamic

equilibriurm holds will vary from layer to layer. In other words, what a given layer
does to a radiation field which in general is not a thermodynamic equilibrium
field 1s given by the equations of complete equilibrium characterized by the local
kinetic temperature of the gas. This is called the approximation of local ther-
modynamic equilibrium, or LTE, as it is universally abbreviated, and its use
enormously simplifies the solution of the equations of radiative transfer.

Elastic collisions in which particles exchange kinetic energy are much more
frequent than collisions that produce excitation or ionization. Hence in the vast
majority of astronomical circumstances Maxwell’s equation for the velocity
distribution holds, and in this book we shall assume that Maxwell’s equation at
the local kinetic temperature always gives the velocity distribution. It will be
shown later that if Boltzmann's equation holds for the relative upper and lower
level populations, then the source function reduces to the Planck function.
Inelastic collisions producing excitation and de-excitation and ionization drive
the degree of excitation towards that given by Boltzmann’s equation and the
degree of ionization towards that given by Saha's equation, so LTE is more likely
in high density conditions. Equally if the optical depth is very large, then photons
travel small distances so even if radiative processes are dominant over collisional
processes, local conditions have a dominating effect and the local kinetic tem-
perature will control the level populations via the occasional collisional process.

LTE will clearly hold in the interior of a star where the density is high, the
average distance travelled by a photon is small, and the net outwards flux
represents a small deviation {rom a nearly isotropic radiation field. Equally
clearly we cannot expect LTE to hold at all in the thinnest parts of the interstellar
medium where the density represents a good terrestrial vacuum, but the radiation
field has major non-local contributions from the microwave background and the
general star background. On the other hand it often turns out that in the lower
density parts of the interstellar medium the equations of statistical equilibrium
are particularly simple with only a few low-lying levels being significantly
populated and the gas being optically thin so that any photon emitted is sure to
escape without being reabsorbed. The latter point means that we do not need to
solve an equation of radiative transfer at all. Similar considerations apply to-
gaseous nebulae, which also often have low densities and optical thinness at many
wavelengths, with the radiation field supplied by the illuminating star. Unfortu-
nately, most environments in stellar atmospheres and dense molecular clouds lie
somewhere in between these extremes, the gas being of moderate density but
optically thick and many levels being significantly populated. Some lines may be



basic equations and to obtain approximate results from observations. No claim is
made here to have incorporated all the latest corrections and all the latest
physical data such as transition probabilities—{or these the reader is referred to
the review articles. Units are S.I. (mks) throughout except for a few stray
references to parsecs, and if a formula appears without units, S.I. units should be
assumed. No discussion has been attempted here of observational techniques—
there are other books dealing with these topics—but of course it is very
important that the observer is fully aware of the observational constraints and
problems when interpreting the data.

The first four chapters deal with fundamentals common to most regimes such
as radiative transfer, statistical equilibrium and line formation and broadening.
Subsequent chapters look at applications to stars, photoionized gases, the cold
interstellar medium (which includes a discussion of masers), winds and circum-
stetlar shells, ending with a brief discussion of coronal gases. We shall finish this
introduction with a brief consideration of some of the concepts found in the
opening chapters.

Radiative transfer is concerned with how the radiative energy flow changes
as one moves through an emitting and absorbing gas. One wants in the end to
be able to predict the spectrum that emerges from a given gas cloud or star as
a function of direction and frequency, because this is what we observe and
comparison of predictions with observations enables the composition, tem-
perature and density of the cloud or stellar atmosphere to be ascertained. In
general, the temperature and density will vary as one moves deeper into the object
observed, particularly in the case of stars, so one would like to be able to model
the cloud or stellar atmosphere—that is, for a given energy input to be able
to predict the run of temperature through the cloud or stellar atmosphere. Any
region int a cloud or stellar atmosphere must obey energy conservation with total
energy input equal to total energy output. In the case of a non-extended stellar
atmosphere, since there are no sources or sinks of energy in the absence of
convection or other mechanical means of energy transport, the total fiux (which
measures the radiative energy flow) passing through successive layers of the
atmosphere must be a constant, although the distribution of monochromatic flux
with frequency wilt change. This condition of flux constancy expresses the law of
energy conservation, and calculating the temperature gradient needed to drive
a given constant flux (fixed by the luminosity and radius of the star) against the
opposition of the opaqueness of the gas, together with the condition of hydros-
tatic equilibrium {with g fixed by the radius and mass of the star}, enables a
model stellar atmosphere to be produced giving temperature and pressure as
a function of depth. In contrast, the temperature gradient is of much less
importance in the case of an interstellar molecular cloud and the net radiative
flow may be small with considerable non-radiative energy input in the form of
cosmic rays, so that the simplest interpretations of molecular cloud spectra
often assume a constant temperaturc. However, in more detailed work it is

necessary to produce a model of the temperature distribution in molecular clouds
as well.

One still has to determine the emissive and absorbing powers of the gas which
enier into the equations of radiative transfer, to be more precise the emission
coefficient and the absorption coefficient. These coefficients often appear in
radiative transfer in the form of the ratio of emission to absorption coefficient, the
source function, and of the optical depth, the integral of the absorption coefficient
with respect to distance along a particular line of sight. The absorption coefficient
at a particular frequency will be the sum of the absorption coefficients of all the
atomic and molecular radiative processes that can take place at that frequency.
The absorption coefficient for each process will be proportional to the product of
the transition probability and the number of atoms or ions or molecules that are
in the appropriate quantum state (lower energy level) for the transition con-
cerned. Similarly, the emission coefficient will be proportional to the product of
the transition probability and the number of atoms or ions or molecules in the
appropriate upperenergy level. In turn, the number of atoms or ions or molecules
in the correct initial state depends not only on the abundance of the element or
elements concerned, but also on the degree of excitation, ionization, and (for
molecules) dissociation.

Now if we have a steady state (and in astrophysics we often do, but there are
important exceptions such as shock waves and solar fiares), and are given the
composition, density and temperature of the gas under consideration and all the
appropriate atomic and molecular constants, we can determine the degree of
excitation, ionization and dissociation by using the equations of statistical
equilibrium. For each quantum level, the rate of departure to all other levels by
all processes {collisional as well as radiative) equals the rate of arrival from all

_other levels by all processes. An equation expressing this balance is written

for each level, and the set of equations is solved simuitaneously subject to the
given total abundances of the elements involved and the given pressure and
temperature, to obtain the populations of ail the levels. In general this cannot
be done because of the enormous number of levels involved which makes the
matrix to be solved impossibly large. A second problem is that the rates of
some of the radiative processes filling or emptying a level depend on the radia-
tion field, which was what we were trying to find in the first place! Mathemati-
cally we need to solve simultaneously a large matrix and a set of differential
equations.

The situation is made worse by the fact that many of the atomic constants
involved, like transition probabilities and collisional cross-sections, are hard to
measure experimentally and can only be estimated theoretically for the simplest
atomic structures.

Under conditions of complete thermodynamic equilibrium the situation is

greatly simplified because many of the quantities involved are related by the
equations of statistical mechanics,



