
Chapter 16

Absorption Features

As expressed by Eq. 5.31, the measured counts in a spectrum exhibiting absorp-
tion are

Iλ = I0
λ exp{−τλ} = I0

λ exp{−Nσ(λ)}, (16.1)

where τλ is the optical depth, N is the column density (Eq. 5.13), and σ(λ) is
the total absorption cross section (Eq. 5.29). The optical depth, and therefore
Eq. 16.1, is formulated based upon statistical and probabilistic treatment of the
absorption process.

In this chapter, we present the bound–bound and bound–free atomic ab-
sorption cross sections. The total absorption cross section for bound–bound
absorption, known as the Voigt profile, is also presented. In addition, we intro-
duce the well–known equivalent width and the curve of growth for bund–bound
absorption profiles. The most commonly observed bound–free absorption is the
ionization of ground–state neutral hydrogen, known as Lyman–limit absorption;
we present the atomic cross section and absorption behavior for this bound–free
transition.

16.1 Bound–bound absorption cross section

The bound–bound atomic absorption cross section, α(λ), has a highly peaked
and very narrow functional form with wavelength. The wavelength of the peak,
the amplitude of the peak, and the width of the cross section are dictated by
the atomic constants governing the given bound–bound transition.

Per Eq. 4.34, the integral of the cross section provides fractional power ab-
sorbed from the beam per transition. For atomic bound–bound transitions, the
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366 CHAPTER 16. ABSORPTION FEATURES

factional power absorbed is
∫ ∞

0
α(λ) dλ = πf

e2λ2
r

mec2
, (16.2)

where λr is the wavelength at which α(λ) peaks (corresponding to the resonance
frequency, νr = c/λr), and f is the oscillator strength.

16.1.1 The Lorenztian

The functional form of atomic absorption cross sections for bound–bound transi-
tions are known as Cauchy probability distribution functions, Breit–Wigner dis-
tribution functions, or more commonly by physicists and astronomers as Lorentz
distribution functions (or simply “the Lorentzian”).

In the most simple form, the Lorentzian is written

L(x) =
1

π

y

(x − x0)2 + y2
=

1

π

y

(∆x)2 + y2
, (16.3)

where ∆x = x − x0. The peak of L(x) is at x0, which is known as the location
parameter. The amplitude at the peak is 1/πy, thus, y is known as the scale
parameter. The half–width at half–maximum, fwhm/2, is also equal to y.
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Figure 16.1: The Lorentzian distribution function given by Eq. 16.3 as a function of (x −
x0)/2y. The function has unity area, so that the amplitude at the peak is 1/πy when the
full width half maximum is 2y. (inset) The same Lorentzian (solid curve) with a Gaussian
distribution (dashed curve) having the same fwhm and amplitude as the Lorentzian. Note that
the wings of the Lorentzian are highly extended compared to the similar Gaussian distribution.

A Lorentzian centered at ∆x = 0 is illustrated in Figure 16.1 as a function
of (x− x0)/2y. The essential characteristics of the Lorentzian is that the wings
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16.1. BOUND–BOUND ABSORPTION CROSS SECTION 367

of the distribution, defined in the regime (x − x0) " y, decay very slowly, as
(x−x0)−2, and are much more extended than those of a Gaussian function with
the same fwhm and amplitude (see inset of Figure 16.1). The area under L(x)
is unity,

1

π

∫ ∞

0

y

(x − x0)2 + y2
dx =

1

π

∫ ∞

−∞

y

(∆x)2 + y2
d∆x = 1. (16.4)

16.1.2 The cross section

Eq. 16.3 can then be written

α(λ) = f
e2λ2

r

mec2

Γλ2
r/4πc

(λ − λr)2 + (Γλ2
r/4πc)2

, (16.5)

for which y = Γλ2
r/4πc. The fhwm is ∆λ = Γmnλ2

mn/2πc.

16.1.3 Atomic constants

The transition wavelength, the oscillator strength, and damping constan t con-
stitute the atomic constants for each transition. In Table 16.1. the atomic
constants are listed for selected transitions that are commonly seen in absorp-
tion in quasar spectra.

Table 16.1: Atomic Constantsa for Selected Transitions

Ion/Tran λmn fmn Γmn

[Å] [sec−1 ]

Lyα 1215.670b 4.164× 10−1 6.265× 108

Lyβ 1025.722b 7.912× 10−2 1.672× 108

Ovi λ1032 1031.9261c 1.329× 10−1 4.163× 108

Ovi λ1038 1037.6167c 6.609× 10−1 4.095× 108

Nv λ1238 1238.821 1.56 × 10−1 3.40 × 108

Nv λ1242 1242.804 7.80 × 10−2 3.37 × 108

Si iv λ1393 1393.755 5.13 × 10−1 8.80 × 108

Si iv λ1402 1402.770 2.55 × 10−1 8.63 × 108

C iv λ1548 1548.187 1.90 × 10−1 2.65 × 108

C iv λ1550 1550.772 9.52 × 10−2 2.64 × 108

Mg ii λ2796 2796.352 6.08 × 10−1 2.60 × 108

Mg ii λ2803 2803.531 3.03 × 10−1 2.57 × 108

a Taken from the National Institute of Standards and Technology
b Quoted values weighted by branching ratio of both spin states
c Taken from Morton (1991)
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368 CHAPTER 16. ABSORPTION FEATURES

Though oscillator strengths, f , and damping constants, Γ, can be expressed
in terms of fundamental quantities, they are measured in the laboratory for each
transition and carry an uncertainty of ∼ 10%.

Note that the amount of energy removed from the photon beam (in this
case the quasar light) scales with λ2f and has no dependence upon Γ. Thus,
the relative magnitude of energy removed from the beam for the well–known
doublets listed in Table 16.1 is proportional to the ratio of their λ2f values.
(Note, however that the wavelength difference for doublets is small).

For most doublets, the f values differ by a factor of two between the two
transitions. In most all case the bluer transition in a doublet has a larger f
value than that of the redder transition, i.e. fb = 2fr. However, there are rare
cases where this is not the case, such as with the Si ii λλ1190, 1193 doublet, for
which fr = 2fb.

16.2 Voigt profile

The Voigt profile gives the distribution of absorption as a function of wavelength
when the natural absorption coefficient per atom, αnat(λ), is modulated by
the Gaussian thermal distribution of atoms, Nf(∆λ), where N is the column
density. The optical depth, τλ, then, takes on the shape of the Voigt profile
through the convolution

τλ = Nα(λ) = Nαnat(λ) ⊗ f(∆λ), (16.6)

An explicit writing of Eq. 16.6 is

τλ =

∫ ∞

−∞
Nαnat(λ

′)f(λ′ − λ)dλ′, (16.7)

which must be evaluated at each λ to obtain the observed line shape. Expanding
gives

τλ = N
e2λ2

r

mec2
f

Γλ2
r/4πc

(∆λ)2 + (Γλ2
r/4πc)2

⊗ 1√
π∆λD

e−(∆λ/∆λD)2 , (16.8)

where the transition wavelength, λr, has been written explicitly, ∆λ = λ − λr,
and the oscillator stength, f , has been included into the normalization. Note
the integral of α(λ) is still the energy per second per atom per square radian
absorbed by the bound–bound transition, (πe2/mc)(λ2/c)f .

The convolution of a Lorentzian and a Gaussian is the Voigt function, u,
which has unit normalization. The absorption coefficient with wavelength can
be written

τλ = N
πe2λ2

r

mec2
fu(x, y) where u(x, y) =

1√
π∆λD

H(x, y) (16.9)

and where the convolution is conveniently expressed by the Hjerting function,

H(x, y) =
y

π

∫ ∞

−∞

exp(−t2)

(x − t)2 + y2
dt (16.10)
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16.2. VOIGT PROFILE 369

with

x =
∆λ

∆λD
and y =

Γλ2
r

4πc

1

∆λD
. (16.11)

Note that x acts as the independent variable. It simply is the difference between
the wavelength along the profile and the line center in units of the Doppler width.
Also note that y is not a function of ∆λ and therefore does not vary with location
across the absorption profile. For the given transition, y is a function of only the
damping constant, the wavelength of the line center, and the Doppler width. As
seen in Eq. 5.25, the latter depends upon the gas temperature, the wavelength
of the line center, and the mass of the atom. Note that the Doppler width also
appears in the normalization of the Voigt function, u, in Eq. 16.9.
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Figure 16.2: A schematic of the convolution process to obtain the observed line shape in
units of x = ∆λ/∆λD for the Lyα transition. (a) The natural broadening per atom, αnat(x0)
. (b) The thermal distribution of atoms, Nf(x − x0) for log N = 13.5, 15.0, and 20.0 [cm−2]
(from top to bottom). (c) the optical depth profile, τ(x), which is obtained via convolution
of αnat(x0) and Nf(x − x0). (d) Application of Eq. 16.12 gives the absorption profile.

The observed absorption profile will then have the shape

Iλ = Io
λ exp {−τλ} , (16.12)

where Iλ is the observed flux at wavelength λ and Io
λ is the quasar continuum

flux (in the absence of the absorption line).
An illustration of the convolution process for obtaining Eq. 16.12 is shown

in Figure 16.2 for Lyα transitions with log N = 13.5, 15.0, and 20.0 [cm−2]
(from top to bottom). The Lorentzian (natural profile), αnat(x0), is shown in
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370 CHAPTER 16. ABSORPTION FEATURES

Figure 16.2a for an atom centered at location x0. Note the extreme narrowness
of the profile, plotted over the range −0.0005 ≤ x0 ≤ 0.0005; the width is gov-
erned by Γλ2

r/4πc. Convolution with Eq. 5.26 scaled by the total column density,
Nf(x − x0), shown in Figure 16.2b, modulates for the thermal distribution of
atoms at each xo, and yields the optical depth, τ(x), as shown in Figure 16.2c.
Note that, for the small x ranges shown (near the line centers) the τ(x) profile
shapes emulate the shape of f(∆x); i.e., they follow the shape of a Gaussian
function. This is because the width of the Lorentzian is extremely narrow.
However, the amplitudes vary by orders of magnitude depending upon N . For
the log N = 13.5 cm−2 case, τ(x) < 1 for all x and the observed profile in Fig-
ure 16.2d (top panel) is not saturated. For the log N = 15.0 cm−2 case, τ(x) > 1
for |x| < 2, yielding a highly saturated observed profile in Figure 16.2d (center
panel). As the column density is increased to log N = 20.0 cm−2, τ(x) > 1
for |x| < 20, so that τ(x) is non–negligible at large x. In this case, the wings
of τ(x) are governed by the extended wings of the Lorentzian, which become
important contributors to the absorption profile shape. The extended wings of
the profile, shown in Figure 16.2d (lower panel) are called damping wings. This
is in reference to damping constant, Γ, appearing in the Lorentzian.
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Figure 16.3: (a) The logarithmic optical depth, log τ(x), reproduced from Figure 16.2d for
the log N = 20.0 cm−2 case over the range −120 ≤ x ≤ 120. Note that the optical depth is
non–negligible for large x. (b) The same optical depth profile, in an expanded view. Note how
the wings of the optical depth emulate those of Lorentzian, α(x0), giving rise to the so–called
damping wings in the observed absorption profile (bottom panel of Figure 16.2d). Vertical
dashed lines mark the x range shown in Figure 16.2.

An expanded scale of the log τ(x) for log N = 20.0 cm−2 is shown in Fig-
ure 16.3a. In Figure 16.3b, τ(x) is plotted versus x for τ(x) ≤ 1.5. Note that
the optical depth remains non–negligible over the range x ± 100, decreasing
slowly per the wings of the Lorentzian for increasing x. These extended wings
are what gives rise to the damping wings of the observed profiles, as shown in
Figure 16.2d (lower panel). Thus, we see that the shape of the optical depth,
Voigt profile behaves as a Gaussian function for small x (near the line core),
and behaves as the wings of the Lorentzian, τ(x) ∝ x−2, for large x. However,
it is only in cases of large N that τ(x) is non–negligible beyond the line core.

Profiles such as those shown Figure 16.2d can be fit to Eq. 16.12 to objec-
tively obtain the column density, N , and the only additional free parameter, the
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16.3. EQUIVALENT WIDTHS: CURVE OF GROWTH 371

Doppler width, ∆λD. This approach is useful only for high resolution data in
which the line width induced by the instrument (see § 6.10) is significantly less
than the Doppler width. Usually the fitting of the data is performed using the
technique of χ2 minimization (§ 3.5). In high resolution spectra, the absorption
lines often break up into multiple components, forming a complex and often
blended profile shape. We will address this further complexity in Chapter 17.

16.3 Equivalent widths: curve of growth

The general definition of the equivalent width is

W =

∫ ∞

−∞

(

1 − Iλ

I0
λ

)

dλ. (16.13)

The units of W are wavelength units, such as Å. The equivalent width represents
the width in wavelength of an absorption feature with Iλ = 0 across the profile
(an inverted top hat function) with the identical amount of flux removed from
the photon beam. It is also a conserved quantity in that it is independent of
the line shape and the resolution of the spectrograph (see below).

Recall that the shape of an absorption profile is given by

Iλ = I0
λ exp {−τλ} = I0

λ exp {−Nα(λ)} . (16.14)

Rewriting Eq. 16.13 by substituting Eq. 16.14, we have

W =

∫ ∞

−∞
[1 − exp{−τλ}]dλ. (16.15)

A schematic illustrating the interpretation of the equivalent width is shown
in Figure 16.4 for W = 0.21 Å. The integral of the flux remove from the incident
light beam is identical for each of the very different absorption profiles. The
shaded grey area is the “equivalent profile” with zero flux. The width of this
“equivalent profile” is the equivalent width.

As can be seen in Figure 16.4, there can be a family of Nα(λ) combinations
for fixed W . That is, the equivalent width is degenerate for various combinations
of column density, N , and absorption coefficient, α(λ). For a given atomic
transition, the shape of α(λ) is governed by ∆λD of the Gaussian component
to the Voigt function (see Eq. 16.9). Recall that ∆λD is proportional to the
Doppler b parameter, which is used to characterize the thermal and/or turbulent
component to the line broadening.

As shown above, the equivalent width is related to N and b through the
optical depth, τλ = Nα(λ). The behavior of the equivalent width dependence
on N and b is called the curve of growth, or COG. As the optical depth of the
line increases, the equivalent width also increases, however the precise functional
dependence is sensitive to the optical depth at the line core, τo.

As τo increases, the line depth increases until all the photons at the line
core are removed from the incoming beam. At this point, the absorption line
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Figure 16.4: A schematic of four absorptions lines each with equivalent width W = 0.21 Å.
Though the line profile shapes are quite different, the total amount of flux absorbed, as given
by Eq. 16.15, are identical. The shaded grey area shows the interpretation of the equivalent
width.

is considered to be “saturated”. As τo increases further, very little additional
light is removed from the beam until a regime in which damping wings form at
very large τo. At these large τo values, the majority of the light is removed far
from line center. These three regimes of behavior are called the “linear”, “flat”,
and “damped” parts of the COG respectively. These are often refereed to as
the linear, logarithmic, and square root regimes of the curve of growth due to
the functional dependence upon the column density, N . Note that only in the
logarithmic part will W be sensitive to the b parameter, and thus the Gaussian
component of the line broadening.

In the following sections, the functional dependence of the COG will be
examined in detail. For regime of behavior along the COG, a dominant physical
process is at play, and this will guide the derivation of τo for each of the three
parts of the COG. In short, we have

W ∝ N τo ) 1 τo =
πe2

mc2
λ2Nf

W ∝ b
√

ln(N/b) 10 ≤ τo ≤ 103 τo =
π1/2e2

mc

λ

b
Nf (16.16)

W ∝
√

N τo ≥ 104 τo =
1

4

e2Γ

mc3
λ4Nf

In Figure 16.5, the COG for the Lyα (n = 1 → 2) transition of H i is
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16.3. EQUIVALENT WIDTHS: CURVE OF GROWTH 373

shown for b = 30 km sec−1 as a function of τo. The thick portions of the
curves correspond to the flat, logarithmic, and square root parts of the COG,
based upon the slope of the curve on a log–log diagram. Insets show the Lyα
absorption profiles for locations on the COG, marked with filled circles, in each
regime with increasing τo.
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Figure 16.5: The COG showing equivalent width as a function of the optical depth at line
core, τo, for Lyα for b = 30 km sec−1. The three regimes, “linear”, “logarithmic”, and “square
root”, corresponding to Eq. 16.17, are shown by the thick curves, respectively, as τo increases.
Absorption profiles are shown for each regime and their locations on the COG marked with
filled points. Note the expanded wavelength scale for the profiles on the square root part of
the COG. This is due to large damping wings.

16.3.1 The linear regime

In the optically thin regime, the optical depth in the line core is small, τo ) 1.
Using series expansion of the exponential, we can approximate exp(−τλ) , −τλ.
Substituting into Eq. 16.15, gives

W =

∫ ∞

−∞
τλdλ = N

∫ ∞

−∞
α(λ)dλ (16.17)

Substituting Eq. 16.9 for α(λ), we have

W =
πe2

mc

λ2

c
Nf

∫ ∞

−∞
u(x, y)dλ = τo

∫ ∞

−∞
u(x, y)dλ, (16.18)

which defines τo, where u(x, y) is the Voigt function given by Eq. 16.11. By
definition the Voigt function has unity normalization, so the integral in Eq. 16.18
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equals unity and we have the linear functional dependence, W ∝ N ,

W =
πe2

mc

λ2

c
Nf. (16.19)

Note that the shape of u(x, y) depends upon the Doppler width, ∆λD ∝ b, and
is thus dependent upon the gas temperature. However, W is an integrated quan-
tity and, because the Voigt function has unity normalization, is independent of
b in the regime of τo ) 1.

Physically, in the regime of small τo, as more atoms are added to the ab-
sorbing gas, W grows by a deepening of the line core due to the removal of
additional photons in the beam.

16.3.2 The logarithmic regime

In the regime where 10 ≤ τo ≤ 103, the damping wings of the Lorentzian are
insignificant compared to those of the Gaussian contribution, and we can treat
the Lorentzian contribution to the absorption coefficient as a δ function. We
can write the optical depth as

τλ = Nα(λ) , πe2λ2

mc2
Nf

1

π1/2∆λD
exp

[

−
(

∆λ

∆λD

)2
]

. (16.20)

Defining τo = (πe2λ2/mc2)(1/π1/2∆λD)Nf , the optical depth of the line core,
and invoking x = (∆λ/∆λD), we can simplify the above equation to

τλ = τo exp(−x2). (16.21)

From Eq. 16.15, the equivalent width is then

W = ∆λD

∫ ∞

−∞

[

1 − exp(−τoe
−x2

)
]

dx = ∆λDF (τo) (16.22)

where

F (τo) =

∫ ∞

−∞

[

1 − exp(−τoe
−x2

)
]

dx (16.23)

=
π1/2

2

∞
∑

n=1

(−1)n−1τn
o

n!n1/2
. (16.24)

In the “flat” part of the curve of growth, the line core is saturated, meaning
that W does not grow due to removal of photons with small x, where the
Lorentzian dominates. The function F (τo) provides the behavior of the line
absorption strength in the regime where the width of the line is governed by
a Gaussian broadening mechanism. As τo is increased, the amplitude of the
Gaussian increases and the wings of the line remove more flux from the beam.
Physically, as more atoms are added to the gas, it is those in the tails of the
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Doppler velocity distribution that contribute to increasing W . Thus, as we shall
see below, W ∝ b for a fixed N .

For small τo, a series expansion of Eq. 16.21 yields Eq. 16.19 for the linear
part of the curve of growth. When τo is large, series expansion yields the
asymptotic solution

F (τo) = (ln τo)
1/2 , (16.25)

which gives

W = ∆λD (ln τo)
1/2 . (16.26)

From Eq. ??, b = (c/λ)∆λD, and we have the full form of W written as

W = b
λ

c

(

ln

[

π1/2e2

mc

λ

b
Nf

])1/2

. (16.27)

16.3.3 The square root regime

In this regime, where τo > 104, the Lorentzian dominates due to very strong
and broad wings. In this case, the Gaussian contribution to the Voigt function
can treated as if it were a δ function. Thus, we can write the optical depth as

τλ = Nα(λ) , πe2λ2

mc2
Nf

Γλ2/4πc

(∆λ)2 + (Γλ2/4πc)2
(16.28)

where α(λ) is given by Eq. 16.5. Defining β = Γλ2/4πc2, we rewrite this as

τλ =
πe2λ2

mc2
Nf

β

(∆λ)2 + β2
(16.29)

Due to the behavior of the Lorentzian, the majority of the energy removed
from the beam is in wings of the absorption line. Thus, the equivalent width
is dominated by regions under the line profile that are far from the line center.
Under this assumption, ∆λ " β, which leads to the approximation

τλ =
πe2λ2

mc2
Nf

β

(∆λ)2
1

1 + (β/∆λ)2
, τo

(∆λ)2
, (16.30)

where we define τo = β(πe2λ2/(mc2)Nf , the optical depth at the line center.
Substituting this into Eq. 16.13, we have

W ,
∫ ∞

−∞

[

1 − exp(−τo/(∆λ)2)
]

dλ. (16.31)

The functional dependence of W can be obtained by a change of variable. Let
u2 = (∆λ)2/τo, then du = dλ/

√
τo. Substituting onto the above integral, we

have

W , τ1/2
o

∫ ∞

−∞

[

1 − exp(−1/u2)
]

du = τ1/2
o F (16.32)
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where F is the value of the integral (a Gamma function, but yields a constant
because there is no dependence upon τo). Writing out τo fully, we have

W , F
λ2

c2

(

e2

4m
ΓNf

)1/2

. (16.33)

Note that W ∝
√
ΓN , giving this regime either the name “square root” or

“damping” part of the curve of growth.

16.3.4 Doublet ratios

In Figure 16.6, the COGs are shown for the often observed transitions Lyα
λ1215, Mg ii λ2796, C iv λ1548, and Ovi λ1031. The point of the illustration
is that each of the COGs have very similar behavior. The only distinctions are
the column density regimes of the three main parts of the COGs. In practice,
only the Lyα transition is observed on the square root (damping) part of the
COG.

However, it can be challenging to deduce the column density in the logarith-
mic (flat) part of the COG. In this regime, it is necessary to include information
from additional transition from the same ionic species.
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Figure 16.6: The curve of growth for Lyα λ1215, Mg ii λ2796, C iv λ1548, and Ovi λ1031.
For each species, the equivalent width, W , [Å] is plotted vs. the logarithm of the column
density. For the curves shown, the range of b parameters are given in the lower right corner
of the panels, with b increasing in steps of ∆b upward.
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