Components to an Atmosphere’s Gas

1. Radiation Field - distribution of numbers of photon energies of photons

- Thermal Equilibrium - must be locally coupled to thermal conditions of particles (gas)

- Non-Equilibrium - can arise in "distant" region (where it is coupled to thermal properties) and thus influence particle energies and states in a non local way

- Local Thermal Equilibrium (LTE) - thermal conditions of gas and radiation field change on small scales relative to the overall structure; though radiation field not in strict TE with particles it is approximated as being so...

2. Particles - comprising neutral atoms, ionized atoms, free electrons, neutral molecules, and ionized molecules

(stored energy) ⇒ atoms/ions and molecules can have various levels and modes of excitation (stored internal energy)

- Thermal Equilibrium - distribution of electron energies (velocities) and distribution of atomic/molecular excitations, ionizations, and kinetic energies coupled to radiation field.

- Non-LTE and LTE (departure coefficients) - atmosphere not in strict TE or LTE, so theory developed called Non-LTE which starts w/LTE and adds correction factors
Temperature Effects:

1. Distribution of particle speeds
 - Many interactions are velocity dependent.

2. Distribution of photons (numbers and energies)
 - Governs flux off star, continuum radiation field.

3. Distribution of excited states and ionization stages of elements.
 - Thus, governs # of free electrons in gas.
 - Governs strengths of absorption lines.

\[f(v_x)dv_x = \left\{ \frac{m}{2\pi kT} \right\}^{1/2} \exp \left[-\frac{mv_x^2}{2kT} \right] dv_x \]

\[f(v_x) = \frac{n(v_x)}{n} \]

\[f(v_x)dv_x = \text{number of particles having velocity component in } "x" \text{-direction} \]

\[m = \text{total number of particles, } n(v_x) = \text{number in range } v \to v+dv \]

\[m = \text{mass of particle} \]

\[3D \]

\[f(v) = f(v_x)f(v_y)f(v_z) = \left\{ \frac{m^3}{2\pi kT} \right\}^{3/2} \exp \left[-\frac{m(v_x^2+v_y^2+v_z^2)}{2kT} \right] \]

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v)dv_xdv_ydv_z = 1 \]

* Thermal broadening of absorption lines with characteristic with

\[\Delta \lambda_B = \frac{v_0}{c} \lambda = \frac{\lambda}{c} \left\{ \frac{2kT}{m} \right\}^{1/2} \]

\[V_0 = \text{most probable speed} = \left\{ \frac{2kT}{m} \right\}^{1/2} \]

\[\text{Average speed} = \left\{ \frac{8kT}{\pi m} \right\}^{1/2} \]

\[\text{RMS speed} = \left\{ \frac{3kT}{m} \right\}^{1/2} \]

\[v = \text{velocity dist. in single direction is Gaussian!} \]
Figure 5.5: The Maxwellian distribution of particle speeds and one-dimensional velocity components. (a) The distribution of the observed line of sight component of velocity, v_\parallel, for hydrogen at $T = 10,000$, $25,000$, and $50,000$ K. (b) The distribution of v_\parallel for hydrogen, carbon, magnesium, and iron at $T = 50,000$ K. (c) The distribution of particle speeds, v, for hydrogen at $T = 10,000$, $25,000$, and $50,000$ K. (d) The distribution of v for hydrogen, carbon, magnesium, and iron at $T = 50,000$ K.

for electrons $m = m_e$, $T = T_e$ assuming electrons are thermelized.

for atomic species k, $m = m_k$, $T = T_k$ kinetic temperature of species k.

If electrons and nuclear particles are thermelized, then particles are in equilibrium, gas has single temperature.

- however, for thermal equilibrium, all particles must be thermelized at a given T and radiation must be thermelized at this same T. If so, then radiation distribution function is a Planck function.
Radiation Field

- In thermal equilibrium, the radiation field is the Planck function

\[B_\nu(T) = \frac{2\pi h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1} \text{ Sr}^{-1} \]

- Provides the energy per second per unit area per unit of frequency per unit of solid angle. (into unit solid angle)

- In wavelength units

\[B_\lambda(T) = \frac{2\pi c^2}{\lambda^5} \frac{1}{\exp(hc/\lambda kT) - 1} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ A}^{-1} \text{ Sr}^{-1} \]

per unit angstrom

- The wavelength of peak is \(\lambda_{\text{max}} = \frac{5.1 \times 10^{-7}}{T} \text{ A} \)

- Integrating over all frequency

\[B(T) = \int_0^\infty B_\nu(T) d\nu = \frac{\sigma}{\pi} T^4 \]

\[\text{Flux} = \pi B(T) = \sigma T^4 \]

- Recall that Flux = \(\frac{L}{4\pi R_x^2} = \sigma T^4 \)

\[\sigma = \text{Stefan-Boltzmann constant} = \frac{2\pi^5 K}{15h^3 c^2} = 5.67 \times 10^{-5} \quad \text{erg s}^{-1} \text{ cm}^{-2} \text{ K}^{-4} \]

- Thus, the radiation field in a gas in thermal equilibrium is dependent upon one physical macroscopic parameter = T
Fig. 1. The brightness, $B_v(T)$, of a black-body radiator at frequency, v, and temperature, T. The Planck function, $B_v(T)$, is given by Eq. (1-119)

$$E = \sigma T^4$$ energy under curve

Fig. 1-1 Wavelength Distributions of Black Body Radiation for Various Temperatures. The temperatures 12,000°K, 9000°K, 6000°K, and 3000°K are in the ratio 4:3:2:1. Hence the wavelengths of maximum intensity, according to Wien’s law, are in the ratio 1:2:3:4, respectively, and are 0.2415 μ, 0.3220 μ, 0.4830 μ, and 0.9659 μ. The areas under the curves, as given by the Stefan-Boltzmann law, are $4^4:3^4:2^4:1$ or 256:81:16:1. The two short strokes below the horizontal axis indicate the approximate range of visible radiation. This encompasses the most intense part of the emission at 6000°K, which corresponds closely to the wavelength distribution of the energy emitted by the Sun (cf. Fig. 1-2). (Novotny)
Mean Kinetic Energy

Consider particles of mass m in non-relativistic gas

$$\langle KE \rangle = \frac{1}{2} m \langle v^2 \rangle$$

where

$$\langle v^2 \rangle = \frac{\int_0^\infty v^2 f(v) \, dv}{\int_0^\infty f(v) \, dv} = 1$$

$f(v)$ = Maxwellian speed distribution

$$f(v) \, dv = \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} \exp\left\{ - \frac{m v^2}{2kT} \right\} \frac{v^2}{2} \, dv$$

We obtain

$$\langle v^2 \rangle = \int_0^\infty v^2 f(v) \, dv = \frac{4}{11} \frac{1}{v_0^3} \int_0^\infty \exp\left\{ - \frac{v^2}{v_0^2} \right\} v^4 \, dv$$

where $v_0 = \left(\frac{2kT}{m} \right)^{\frac{1}{2}}$ = most probable speed

and where

$$\int_0^\infty \exp\left\{ - \frac{v^2}{v_0^2} \right\} v^4 \, dv = \frac{3}{8} \pi \frac{1}{2} v_0^5$$

$$\langle v^2 \rangle = \left(\frac{4}{11} \frac{1}{v_0^3} \right) \left(\frac{3}{8} \pi \frac{1}{2} v_0^5 \right) = \frac{3}{2} \frac{v_0^2}{v_0^2} = \frac{3}{2} \frac{kT}{m}$$

Substituting into $\langle KE \rangle$:

$$\langle KE \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} \frac{kT}{m}$$

per particle. $T = T_k$ is clearly the "kinetic" temperature.

NOTE: Average $\langle KE \rangle$ is independent of particle mass — thus, if all particles are thermalized and have some T, then the mean kinetic energy of the gas is simply

$$\frac{3}{2} n k T$$

n = total number density
Particle Pressure (and definition of mean molecular weight)

Pressure = Force per unit area = \(\frac{1}{A} \frac{dp}{dt} \)

\(p = \text{momentum of particles} \)

\[
\begin{align*}
\text{momentum per particle of mass } m &= mv \\
\text{Pressure} &= (mv) \frac{dn}{dt}
\end{align*}
\]

where \(\frac{dn}{dt} = \text{rate at which number density of particles pass through unit area in time dt} \)

\[
\frac{dn}{dt} = \frac{1}{3} n v
\]

\[\{ \text{rate at which particles pass through unit area on average} \} \]

thus

\[
\langle P \rangle = \langle mv, \frac{1}{3} n v \rangle = \frac{1}{3} m n \langle v^2 \rangle = \frac{p}{3} \langle v^2 \rangle
\]

from \(\langle KE \rangle \) we found \(\langle v^2 \rangle = 3 \frac{kT}{m} \)

thus

\[
\langle P \rangle = \frac{p}{m} kT
\]

since \(\langle KE \rangle = \frac{3}{2} kT \) we see that

\[
\langle P \rangle = \frac{p}{m} \left(\frac{3}{8} \langle KE \rangle \right)
\]

Mean Molecular Weight

*This mean particle pressure applies to a single class of particle of mass \(m \).

In actuality we must account for the mean mass of the gas, such that

\[
P_{\text{av}} = \frac{p}{\langle m \rangle} kT
\]

where

\[
\langle m \rangle = \mu m_{\text{amu}}
\]

\[
m_{\text{amu}} = 1.66053878 \times 10^{-24} \text{ g}
\]

\(\mu \equiv \text{mean molecular weight} = \text{mean mass of all particles in amu units}. \)

Yielding

(for mixture of particles)

\[
\langle P \rangle = \frac{p}{\mu m_{\text{amu}}} kT
\]

\{ sometimes authors employ \}

\[
M_{\text{amu}} = M_H
\]

\{ technically incorrect \}

\(\text{even though } m_{\text{amu}} \neq M_H \)
Total Pressure in a gas is sum of partial pressures

\[P = \sum P_i \]

Main pressures:

\(P_N \) = pressure from atom/nuclear particles including bare nuclei, partially ionized atoms, neutral atoms.

\(P_e \) = electron pressure from free electrons in the gas.

\(P_{rad} \) = radiation pressure due to photons

\[P = P_N + P_e + P_{rad} \]

define \(P_{gas} = P_N + P_e \)

\[P = P_{gas} + P_{rad} \]

\[P_N = \frac{N_N \cdot kT}{N_{N_{max}}} \]

\[P_e = \frac{N_e \cdot kT}{\mu_e m_{e0}} \]

Note:

\[n = \frac{N_N}{N_{N_{max}}} \]

or \(P = N_{N_{max}} n \)

\(P_{rad} = \frac{1}{3} U = \frac{2}{3} \cdot a \cdot T^4 \)

\(U = \text{energy density of photons} \quad [\text{erg cm}^{-3}] \)

\(a = \text{radiation density constant} \)

\(c = 7.56 \times 10^{-15} \quad [\text{erg cm}^{-3} \text{ K}^{-4}] \)
number densities, mass densities, mass fractions

\[n_i = \text{number of particles per unit volume } [\text{cm}^{-3}] \]
\[\rho_i = \text{mass of particles per unit volume } [\text{g cm}^{-3}] \]
\[x_i = \text{fraction of } \rho_i \text{ to total } \rho = \sum \rho_i \text{ mass fraction [unitless]} \]
\[\uparrow x_i = \frac{\rho_i}{\sum \rho_i} \]

for nuclear/atomic particles, define subscripts:

- \(i \) = excitation level \(i = 1, 2, \ldots \infty \)
- \(j \) = ionization level \(j = 1 \) neutral \(j = 1, 2, 3, \ldots Z+1 \)
- \(k \) = species \(k = 1 \) hydrogen, \(k = 2 \) helium, etc.

use convention that \(k \) = atomic number

then \(j \) ranges from 1 to \(k+1 \)

we then have:

\[n_{ijk} = \text{number density of species } k \text{ in ionization stage } j \text{ and excitation state } i \]

then

\[n_{jk} = \sum_i n_{ijk} \text{ number density of species } k \text{ in ionization stage } j \text{ (includes all excitation states)} \]

\[n_k = \sum_{j=1}^{k+1} n_{jk} = \sum_{j=1}^{k+1} \sum_i n_{ijk} \text{ number density of species } k \text{ (includes all ionization states in all excitation states)} \]
Abundances

- three ways to measure ξ_k

1. $\tilde{\xi}_k = \log \left(\frac{n_k}{n_H} \right) + 12.00$ commonly tabulated (Asplund, Grevesse, $+$ Sauval 2005, astro-ph/0410214)

2. $\frac{n_k}{n_H} = \text{density wrt to hydrogen} \rightarrow \text{just solve from } \tilde{\xi}_k$

3. $\xi_k = \frac{n_k}{n_N}$, $n_N = \sum_k n_k$

where $\sum_k \xi_k = 1$

- defining metallicity/abundances wrt solar

\[\left[\frac{X}{H} \right] = \log \left(\frac{X}{H} \right) - \log \left(\frac{X}{H} \right)_0 = 0 \text{ for solar abundance of } X \]

$\frac{X}{H} = \frac{n_k}{n_H}$ of target object

$\left(\frac{X}{H} \right)_0 = \frac{n_k}{n_H}$ of solar photosphere (sometimes including meteoric values)

ex. \[\left[\frac{X}{H} \right] = -0.5 \text{ is } \frac{1}{2} \text{ dex below solar abundance} \]
Table 1. Element abundances in the present-day solar photosphere and in meteorites (Cl chondrites). Indirect solar estimates are marked with [..]

<table>
<thead>
<tr>
<th>Elem.</th>
<th>Photosphere</th>
<th>Meteorites</th>
<th>Elem.</th>
<th>Photosphere</th>
<th>Meteorites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H</td>
<td>12.00</td>
<td>8.25 ± 0.05</td>
<td>44 Ru</td>
<td>1.84 ± 0.07</td>
<td>1.77 ± 0.08</td>
</tr>
<tr>
<td>2 He</td>
<td>[10.93 ± 0.01]</td>
<td>1.29</td>
<td>45 Rh</td>
<td>1.12 ± 0.12</td>
<td>1.07 ± 0.02</td>
</tr>
<tr>
<td>3 Li</td>
<td>1.05 ± 0.10</td>
<td>3.25 ± 0.06</td>
<td>46 Pd</td>
<td>1.69 ± 0.04</td>
<td>1.67 ± 0.02</td>
</tr>
<tr>
<td>4 Be</td>
<td>1.38 ± 0.09</td>
<td>1.38 ± 0.08</td>
<td>47 Ag</td>
<td>0.94 ± 0.24</td>
<td>1.20 ± 0.06</td>
</tr>
<tr>
<td>5 B</td>
<td>2.70 ± 0.20</td>
<td>2.75 ± 0.04</td>
<td>48 Cd</td>
<td>1.77 ± 0.11</td>
<td>1.71 ± 0.03</td>
</tr>
<tr>
<td>6 C</td>
<td>8.39 ± 0.05</td>
<td>7.40 ± 0.06</td>
<td>49 In</td>
<td>1.60 ± 0.20</td>
<td>0.80 ± 0.03</td>
</tr>
<tr>
<td>7 N</td>
<td>7.78 ± 0.06</td>
<td>6.25 ± 0.07</td>
<td>50 Sn</td>
<td>2.00 ± 0.30</td>
<td>2.08 ± 0.04</td>
</tr>
<tr>
<td>8 O</td>
<td>8.66 ± 0.05</td>
<td>8.39 ± 0.02</td>
<td>51 Sb</td>
<td>1.00 ± 0.30</td>
<td>1.03 ± 0.07</td>
</tr>
<tr>
<td>9 F</td>
<td>4.56 ± 0.30</td>
<td>4.43 ± 0.06</td>
<td>52 Te</td>
<td>2.19 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>10 Ne</td>
<td>[7.84 ± 0.06]</td>
<td>-1.06</td>
<td>53 I</td>
<td></td>
<td>1.51 ± 0.12</td>
</tr>
<tr>
<td>11 Na</td>
<td>6.17 ± 0.04</td>
<td>6.27 ± 0.03</td>
<td>54 Xe</td>
<td>[2.27 ± 0.02]</td>
<td>-1.97</td>
</tr>
<tr>
<td>12 Mg</td>
<td>7.53 ± 0.09</td>
<td>7.53 ± 0.03</td>
<td>55 Cs</td>
<td></td>
<td>1.07 ± 0.03</td>
</tr>
<tr>
<td>13 Al</td>
<td>6.37 ± 0.06</td>
<td>6.43 ± 0.02</td>
<td>56 Ba</td>
<td>2.17 ± 0.07</td>
<td>2.16 ± 0.03</td>
</tr>
<tr>
<td>14 Si</td>
<td>7.51 ± 0.04</td>
<td>7.51 ± 0.02</td>
<td>57 La</td>
<td>1.13 ± 0.05</td>
<td>1.15 ± 0.06</td>
</tr>
<tr>
<td>15 P</td>
<td>5.36 ± 0.04</td>
<td>5.40 ± 0.04</td>
<td>58 Ce</td>
<td>1.58 ± 0.09</td>
<td>1.58 ± 0.02</td>
</tr>
<tr>
<td>16 S</td>
<td>7.14 ± 0.05</td>
<td>7.16 ± 0.04</td>
<td>59 Pr</td>
<td>0.71 ± 0.08</td>
<td>0.75 ± 0.03</td>
</tr>
<tr>
<td>17 Cl</td>
<td>5.50 ± 0.30</td>
<td>5.23 ± 0.06</td>
<td>60 Nd</td>
<td>1.45 ± 0.05</td>
<td>1.43 ± 0.03</td>
</tr>
<tr>
<td>18 Ar</td>
<td>[6.18 ± 0.08]</td>
<td>-0.45</td>
<td>62 Sm</td>
<td>1.01 ± 0.06</td>
<td>0.92 ± 0.04</td>
</tr>
<tr>
<td>19 K</td>
<td>5.08 ± 0.07</td>
<td>5.06 ± 0.05</td>
<td>63 Eu</td>
<td>0.52 ± 0.06</td>
<td>0.49 ± 0.04</td>
</tr>
<tr>
<td>20 Ca</td>
<td>6.31 ± 0.04</td>
<td>6.29 ± 0.03</td>
<td>64 Gd</td>
<td>1.12 ± 0.04</td>
<td>1.03 ± 0.02</td>
</tr>
<tr>
<td>21 Sc</td>
<td>3.05 ± 0.08</td>
<td>3.04 ± 0.04</td>
<td>65 Tb</td>
<td>0.28 ± 0.30</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>22 Ti</td>
<td>4.90 ± 0.06</td>
<td>4.89 ± 0.03</td>
<td>66 Dy</td>
<td>1.14 ± 0.08</td>
<td>1.10 ± 0.04</td>
</tr>
<tr>
<td>23 V</td>
<td>4.00 ± 0.02</td>
<td>3.97 ± 0.03</td>
<td>67 Ho</td>
<td>0.51 ± 0.10</td>
<td>0.46 ± 0.02</td>
</tr>
<tr>
<td>24 Cr</td>
<td>5.64 ± 0.10</td>
<td>5.63 ± 0.05</td>
<td>68 Er</td>
<td>0.93 ± 0.06</td>
<td>0.92 ± 0.03</td>
</tr>
<tr>
<td>25 Mn</td>
<td>5.39 ± 0.03</td>
<td>5.47 ± 0.03</td>
<td>69 Tm</td>
<td>0.00 ± 0.15</td>
<td>0.08 ± 0.06</td>
</tr>
<tr>
<td>26 Fe</td>
<td>7.45 ± 0.05</td>
<td>7.45 ± 0.03</td>
<td>70 Yb</td>
<td>1.08 ± 0.15</td>
<td>0.91 ± 0.03</td>
</tr>
<tr>
<td>27 Co</td>
<td>4.92 ± 0.08</td>
<td>4.86 ± 0.03</td>
<td>71 Lu</td>
<td>0.06 ± 0.10</td>
<td>0.06 ± 0.06</td>
</tr>
<tr>
<td>28 Ni</td>
<td>6.23 ± 0.04</td>
<td>6.19 ± 0.03</td>
<td>72 Hf</td>
<td>0.88 ± 0.08</td>
<td>0.74 ± 0.04</td>
</tr>
<tr>
<td>29 Cu</td>
<td>4.21 ± 0.04</td>
<td>4.23 ± 0.06</td>
<td>73 Ta</td>
<td></td>
<td>-0.17 ± 0.03</td>
</tr>
<tr>
<td>30 Zn</td>
<td>4.60 ± 0.03</td>
<td>4.61 ± 0.04</td>
<td>74 W</td>
<td>1.11 ± 0.15</td>
<td>0.62 ± 0.03</td>
</tr>
<tr>
<td>31 Ga</td>
<td>2.88 ± 0.10</td>
<td>3.07 ± 0.06</td>
<td>75 Re</td>
<td></td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>32 Ge</td>
<td>3.58 ± 0.05</td>
<td>3.59 ± 0.05</td>
<td>76 Os</td>
<td>1.45 ± 0.10</td>
<td>1.34 ± 0.03</td>
</tr>
<tr>
<td>33 As</td>
<td>2.29 ± 0.05</td>
<td></td>
<td>77 Ir</td>
<td>1.38 ± 0.05</td>
<td>1.32 ± 0.03</td>
</tr>
<tr>
<td>34 Se</td>
<td>3.33 ± 0.04</td>
<td></td>
<td>78 Pt</td>
<td></td>
<td>1.64 ± 0.03</td>
</tr>
<tr>
<td>35 Br</td>
<td>2.56 ± 0.09</td>
<td></td>
<td>79 Au</td>
<td>1.01 ± 0.15</td>
<td>0.80 ± 0.06</td>
</tr>
<tr>
<td>36 Kr</td>
<td>[3.28 ± 0.08]</td>
<td>-2.27</td>
<td>80 Hg</td>
<td>1.13 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>37 Rb</td>
<td>2.60 ± 0.15</td>
<td>2.33 ± 0.06</td>
<td>81 Tl</td>
<td>0.90 ± 0.20</td>
<td>0.78 ± 0.04</td>
</tr>
<tr>
<td>38 Sr</td>
<td>2.92 ± 0.05</td>
<td>2.88 ± 0.04</td>
<td>82 Pb</td>
<td>2.00 ± 0.06</td>
<td>2.02 ± 0.04</td>
</tr>
<tr>
<td>39 Y</td>
<td>2.21 ± 0.02</td>
<td>2.17 ± 0.04</td>
<td>83 Bi</td>
<td></td>
<td>0.65 ± 0.03</td>
</tr>
<tr>
<td>40 Zr</td>
<td>2.59 ± 0.04</td>
<td>2.57 ± 0.02</td>
<td>90 Th</td>
<td></td>
<td>0.06 ± 0.04</td>
</tr>
<tr>
<td>41 Nb</td>
<td>1.42 ± 0.06</td>
<td>1.39 ± 0.03</td>
<td>92 U</td>
<td><0.47</td>
<td>-0.52 ± 0.04</td>
</tr>
<tr>
<td>42 Mo</td>
<td>1.92 ± 0.05</td>
<td>1.96 ± 0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Obtaining ξ_k from $\hat{\alpha}_k$

$$\xi_k = \frac{n_k}{n_W}, \quad n_W = \sum n_k$$

In terms of $\hat{\alpha}_k$

$$\alpha_k = \frac{n_k/n_W}{n_{\hat{\alpha}}/n_H} \quad \text{where} \quad \frac{n_k}{n_W} = 10^{(\hat{\alpha}_k - 12)} \quad \text{and} \quad \frac{n_W}{n_H} = \sum_{k} 10^{(\hat{\alpha}_k - 12)}$$

yielding

$$\alpha_k = \frac{10^{(\hat{\alpha}_k - 12)}}{\sum_{k} 10^{(\hat{\alpha}_k - 12)}}$$

Mass Fractions

$$x_k = \frac{p_k}{p_{\hat{\alpha}}}, \quad n_k = \sum x_k$$

X = mass fraction of hydrogen

Y = mass fraction of helium

Z = mass fraction of metals

$$X = \frac{p_H}{\sum_{k} p_k}, \quad Y = \frac{p_{He}}{\sum_{k} p_k}, \quad Z = \frac{\sum_{k} p_k}{\sum_{k} x_k}$$

Relation between X, Y, Z and ξ_H, ξ_{He}, etc.

$$X = \frac{p_H}{\sum_{k} p_k} = \frac{n_H A_H \mathcal{M}_{env}}{\sum_{k} n_k A_k \mathcal{M}_{env}} = \frac{A_H n_H}{\sum_{k} A_k x_k} = \frac{A_H \xi_H}{\sum_{k} A_k x_k} = \frac{A_H}{A_H} \xi_H$$

$$\xi_H = \left(\frac{X}{A_H}\right) \sum A_k x_k$$
Similarly, we have
\[
Y = \sum_{k=1}^{\infty} \frac{A_{\text{He}} \alpha_k}{A_{\text{He}} \alpha_k} \alpha_k \approx \left(\frac{Y}{A_{\text{He}}} \right) \sum_{k=1}^{\infty} \frac{A_k \alpha_k}{A_{\text{He}} \alpha_k}
\]
and
\[
Z = \sum_{k=3}^{\infty} \frac{A_k \alpha_k}{A_{\text{He}} \alpha_k} \approx \left(\frac{Z}{A_{\text{He}}} \right) \sum_{k=3}^{\infty} \frac{A_k \alpha_k}{A_{\text{He}} \alpha_k}
\]

\[\alpha_k = \text{cannot be solved in general because more than 1 metal!} \]

(see below)

with the constraint \[x + y + z = 1 \quad \text{so} \quad z = 1 - x - y\]

Solar values of mass fractions

\[
\begin{align*}
x_\odot & = 0.70683 \pm 0.018 \\
y_\odot & = 0.27431 \pm 0.016 \\
z_\odot & = 0.0188 \pm 0.0016
\end{align*}
\]

\[\begin{array}{c}
\text{commonly approx values} \\
X = 0.70 \quad Y = 0.28 \quad Z = 0.02 \\
X = 0.71 \quad Y = 0.27 \quad Z = 0.02
\end{array}\]

\[\alpha_{\text{single metal}} = \alpha_3 = \left(\frac{Z}{A_3} \right) \sum_{k=1}^{\infty} \frac{A_k \alpha_k}{A_{\text{He}} \alpha_k} \quad k = 1, 2, 3
\]

from \[\alpha_\text{H} + \alpha_{\text{He}} + \alpha_3 = 1\]
we have

\[
\alpha_\text{H} \left[1 + \frac{\alpha_{\text{He}} + \alpha_3}{\alpha_\text{H}} \right] = 1
\]

\[\alpha_3 = \left[1 + \frac{\alpha_{\text{He}} + \alpha_3}{\alpha_\text{H}} \right]^{-1}
\]

\[\frac{\alpha_{\text{He}}}{\alpha_\text{H}} = \frac{A_{\text{He}}}{A_{\text{He}}} \left(\frac{Y}{X} \right)
\]

\[\frac{\alpha_3}{\alpha_\text{H}} = \frac{A_3}{A_3} \left(\frac{Z}{X} \right)
\]

\[\alpha_3 = \alpha_\text{H} \frac{A_3}{A_3} \left(\frac{Z}{X} \right), \quad \alpha_{\text{He}} = \alpha_\text{H} \frac{A_{\text{He}}}{A_{\text{He}}} \left(\frac{Y}{X} \right), \quad \text{where} \quad \alpha_\text{H} = \left[1 + \frac{A_\text{H}}{A_{\text{He}}} \left(\frac{Y}{X} \right) + \frac{A_3}{A_3} \left(\frac{Z}{X} \right) \right]^{-1}
\]
USEFUL RELATIONS

\[n_N = \sum n_k \]

number density of all nuclear/atomic particles

the same applies for mass densities

\[\rho_{jk} = \sum \rho_{ij} \]
\[\rho_k = \sum \rho_{ik} \]
\[\rho = \sum \rho_k \]

- mass fractions defined

\[x_k = \frac{\rho_k}{\rho_n} = \frac{\rho_{ik}}{\rho_{rk}} \]

- relationships between \(\rho_k, M_k, x_k \) for given atom species (not mixture of species)

\[\rho_k = M_k n_k \]
\[M_k = M_{amu} A_k \]
\[\rho_k = n_k M_{amu} A_k \]

invoking \(x_k = \frac{\rho_k}{\rho_n} \)

\[n_k = \frac{x_k \rho_n}{A_k M_{amu}} \]

or

\[\rho_n = \frac{M_{amu} A_k}{x_k n_k} \]

- these are useful relationships and will be invoked often
- identical equations apply for electrons \(e, M_e, x_e \)
Particle and Charge Conservation - Solving for n_e

- for a non-relativistic gas

$$P_{\text{gas}} = n_k kT = (n_N + n_e) kT$$

where

$$n_k = \sum_{j=1}^{K+1} \sum_{i=1}^{J} \frac{n_{jk}}{n_k}$$

as such, we can write

$$P_{\text{gas}} = P_N + P_e = n_k kT + n_e kT$$

- the density of electrons is given by

$$n_e = \sum_{j=1}^{K+1} \sum_{i=1}^{J} n_{jk} / n_k$$

from

$$\frac{n_{jk}}{n_k} = f_{jk}(n_j, T)$$

- electron density is

$$n_e = \sum_{j=1}^{K+1} n_{jk} \sum_{i=1}^{J} (j-1) P_{jk}$$

- use $n_N = n - n_e$ and $\alpha_k = n_k / n_N = n_k / (n_N + n_e)$

yielding the transcendental equation

$$n_e = (n - n_e) \left\{ \sum_{k=1}^{K+1} \sum_{i=1}^{J} \alpha_k (j-1) f_{jk}(n_j, T) \right\}$$

- the total gas pressure from particles is sum of atoms and ions (denoted n_N) and electrons (denoted n_e)

- sum of all neutrals and ionized species

- $n = n_N + n_e$ with subscript denotes total

- sum of j provides electron density contributed by ion j of species k, i.e. n_{jk}; over all k ionization levels

- ionization fraction

- use if you know all n_k, f_{jk} - the problem is that the f_{jk} depend on n_e; so how to obtain n_e?

- α_k is abundance fraction

So, if you know n and α_k, you must solve this for n_e
Computing mean molecular weights.

Recall
\[P = n k T = \frac{k}{\mu M_{\text{amu}}} \rho T \]
\[\Rightarrow n = \frac{\rho}{\mu M_{\text{amu}}} \]

Three types of \(n \):

1. \(n_U \) = nuclear particles.
2. \(n_e \) = electrons
3. \(n \) = total gas

1) Nuclear particles.
\[P_n = \frac{k}{\mu M_{\text{amu}}} e_n T \]
\[n_n = \frac{e_n}{\mu M_{\text{amu}}} \]

Useful relations
\[n_k = \frac{e_k}{m_k} \] number density of species \(k \) \([\text{cm}^{-3}] \)

\[m_k = M_{\text{amu}} A_k \] mass \([\text{g}] \) of species \(k \), where \(A_k \) = atomic mass

\[X_k = \frac{P_k}{P_n} \] mass fraction of species \(k \)

\[n_k = \frac{X_k}{A_k} \frac{e_n}{M_{\text{amu}}} \]

For all nuclear/atomic species
\[n_n = \sum_k n_k = \frac{e_n}{M_{\text{amu}}} \sum_k \left(\frac{X_k}{A_k} \right) \]

Applying \(n = \frac{\rho}{\mu M_{\text{amu}}} \), we have \(\frac{\rho_n}{\mu M_{\text{amu}}} = \frac{e_n}{M_{\text{amu}}} \sum_k \left(\frac{X_k}{A_k} \right) \)

Yielding
\[n_n = \left\{ \sum_k \left(\frac{X_k}{A_k} \right) \right\}^{-1} \]
[2] electrons \[\rho_e = \frac{k}{N_e m_e u} \rho_e T \]
\[n_e = \frac{\rho_e}{N_e m_e u} \]

Electron density is contributed by ions, a single ion of species \(k \) in ionization stage \(j \) contributes \((j-1)n_{jk}\) to \(n_e \). Thus, the contribution from species \(k \) including all ionization stages is \(\sum_{j=1}^{k+1} (j-1)n_{jk} \). The contribution from all ions of all species is then

\[n_e = \sum_{k=1}^{k+1} \sum_{j=1}^{k+1} (j-1)n_{jk} \]

Invoking the ionization fraction, \(n_{jk} = f_{jk} n_k \),

we have

\[n_e = \sum_{k=1}^{k+1} \sum_{j=1}^{k+1} (j-1)f_{jk} \]

From \(n_k = \frac{x_k}{A_k m_e u} \), we have

\[n_e = \frac{\rho_n}{\rho_n m_e u} \left\{ \sum_{k=1}^{k+1} \sum_{j=1}^{k+1} \frac{x_k}{A_k} (j-1)f_{jk} \right\} \]

Note that \(n_e \) is expressed in terms of \(\rho_n \! \).}

From \(n_e = \frac{\rho_e}{N_e m_e u} \), we have

\[n_e = \frac{\rho_e}{\rho_n} \left\{ \frac{x_k}{A_k} \sum_{j=1}^{k+1} (j-1)f_{jk} \right\}^{-1} \]
WE USE THE CONVENTION THAT TOTAL GAS TERMS HAVE NO SUBSCRIPT

\[n = n_n + n_e = \frac{P}{N_{m_{00}}} \]

RECALL

\[n_n = \frac{P_n}{N_n m_{00}} = \frac{P_n}{m_{00}} \left[\sum \frac{X_k}{A_k} \right] \rightarrow N_n = \left\{ \sum \frac{(X_k)}{A_k} \right\}^{-1} \]

\[n_e = \frac{P_e}{N_e m_{00}} = \frac{P_n}{m_{00}} \left[\sum \frac{X_k}{A_k} \sum (j-1) P_{jk} \right] \rightarrow N_e = \frac{P_e}{P_n} \left\{ \sum \frac{X_k}{A_k} \sum (j-1) P_{jk} \right\}^{-1} \]

\[n = n_n + n_e = \frac{P}{N_{m_{00}}} = \frac{P_n}{m_{00}} \left\{ \sum \frac{X_k}{A_k} \sum (j-1) P_{jk} \right\} \]

\[\frac{P}{N_{m_{00}}} = \frac{P_n}{m_{00}} \left[\frac{1}{N_n} + \frac{1}{N_e} \right] \]

\[\mu = \frac{P}{P_n} \left[\frac{1}{N_n} + \frac{1}{N_e} \right]^{-1} \quad \text{w/} \quad N_e' = \left\{ \sum \frac{X_k}{A_k} \sum (j-1) P_{jk} \right\}^{-1} \]

INTERESTINGLY, THIS YIELDS

\[P_g = \frac{K}{m_{00}} \left[\frac{1}{N_n + N_e'} \right] P_n T \]

TOTAL GAS PRESSURE IN TERMS OF \(P_n\)!

\[\rightarrow \text{to a good approximation, this can be simplified} \rightarrow \]
The massless electron approximation

consider a fully ionized gas (where \(n_e \) is its maximum)
in this case all \(f_{jk} = 0 \) except \(f_{kk} = 1 \), thus

\[
\rho_e = m_e n_e = \frac{\rho_{n}}{M_{nu}} \left\{ \sum_{k} \frac{x_k}{P_{ke}} \sum_{j=1}^{k+1} f_{jk} \right\} = m_e \frac{\rho_{n}}{M_{nu}} \sum_{k} \frac{x_k}{P_{ke}} n_k
\]

from \(n_k = \frac{\rho_{n}}{M_{nu}} \frac{x_k}{P_{ke}} \) we have

\[
\rho_e = m_e \sum_{k} x_k n_k
\]

for nuclear particles

\[
\rho_{n} = \sum_{k} m_k n_k = \frac{M_{nu}}{M_{nu}} \sum_{k} A_k n_k
\]

for all species except hydrogen \(A_k \approx 2k \), \(\rho_{n} = 2 \frac{M_{nu}}{M_{nu}} \sum_{k} x_k n_k \)

we show that \(\rho = \rho_{n} \)

\[
\rho = \rho_{n} + \rho_e = \rho_{n} \left(1 + \frac{\rho_e}{\rho_{n}} \right) = \rho_{n} \left[1 + \frac{m_e \sum_{k} x_k n_k}{2 \frac{M_{nu}}{M_{nu}} \sum_{k} A_k n_k} \right] = \rho_{n} \left[1 + \frac{m_e}{2 \frac{M_{nu}}{M_{nu}}} \right]
\]

\[
\frac{m_e}{2 \frac{M_{nu}}{M_{nu}}} = \frac{9.1 \times 10^{-28}}{2 \times (1.6 \times 10^{-24})} = 2.8 \times 10^{-4}
\]

\(\rho = \rho_{n} \) even in fully ionized gas

\[
\sigma \approx \rho_{n}
\]

\[
N = \frac{\rho}{\rho_{n}} \left[\frac{1}{N_{n}} + \frac{1}{N_{e}} \right] = \frac{\rho_{n} + \rho_e}{\rho_{n}} \left[\frac{1}{N_{n}} + \frac{1}{N_{e}} \right] = \left(1 + \frac{\rho_e}{\rho_{n}} \right) \left[\frac{1}{N_{n}} + \frac{1}{N_{e}} \right] = \left(1 + \frac{\rho_{n}}{\rho_{n}} \right) \left[\frac{1}{N_{n}} + \frac{1}{N_{e}} \right]
\]

giving (to excellent approx)

\[
N = \left[\frac{1}{N_{n}} + \frac{1}{N_{e}} \right]
\]

with \(\rho_{g} = \frac{K}{M_{nu}} \rho \) not \(\rho_{n} \)
\[N = \left[\frac{1}{N_N} + \frac{1}{N_e} \right]^{-1} \]

\[N_N = \left(\sum_{k=1}^\infty \frac{X_k}{A_k} \right)^{-1} = \left(\frac{X_H}{A_H} + \frac{X_{He}}{A_{He}} + \sum_{k=3}^\infty \frac{X_k}{A_k} \right)^{-1} = \left(X + \frac{1}{4} Y + \sum_{k=3}^\infty \frac{X_k}{A_k} \right)^{-1} \quad \text{where } A_{He} > 4 \]

\[N_e = \left(\sum_{k=1}^\infty \frac{X_k}{A_k} \sum_{j=1}^{k-1} f_{jk} \right)^{-1} = \left(\frac{X_H}{A_H} (1) + \frac{X_{He}}{A_{He}} (2) + \sum_{k=3}^\infty \frac{X_k}{A_k} \right)^{-1} \]

\[= \left(X + \frac{1}{2} Y + \sum_{k=3}^\infty \frac{X_k}{Z} \right)^{-1} \quad \text{where we invoke } A_k = 2k \text{ in the sum} \]

\[N = \left[\frac{1}{N_N} + \frac{1}{N_e} \right]^{-1} = \left[\left(X + \frac{1}{4} Y + \sum_{k=3}^\infty \frac{X_k}{A_k} \right) + \left(X + \frac{1}{2} Y + \sum_{k=3}^\infty \frac{X_k}{Z} \right) \right]^{-1} \]

\[= \left[2X + \frac{3}{4} Y + \sum_{k=3}^\infty X_k \left(\frac{2 + A_k}{Z A_k} \right) \right]^{-1} \]

as \(k \) becomes large \(\frac{2 + A_k}{Z A_k} \approx \frac{1}{Z} \) and sum becomes \(\frac{1}{Z} \sum_{k=2}^\infty \frac{X_k}{k} = \frac{1}{2} Z \)

thus

\[N = \left[2X + \frac{3}{4} Y + \frac{1}{2} Z \right]^{-1} \]

using \(X + Y + Z = 1 \) \(Z = 1 - X - Y \), we also have

\[N \approx 2 \left[3X + \frac{1}{2} Y + 1 \right]^{-1} \]