R.T.J McAteer CUME #397 April 2015

This CUME is based on the accompanying paper by Tian et al, 2014, Science, 346,
1155711. ltis not important to read the paper in intricate detail. Instead you should
spend no more than 10 minutes reading the paper, and 5 minutes familiarizing yourself
with the figures, before beginning the exam.

There are 100 total points available. A grade of 70% is expected to be a passing grade.
There are 4 questions (1 has 15 points, 2 has 25 points, 3 has 20 points, and 4 has 40
points). Keep careful time management tc ensure you have sufficient time for all the

questions.

__Calculators are only to be used for calculations.

Show all work for full points.
Attempt all parts of all guestions.
Take a new page for each part of each question.

Some Constants and Equations.

1AU = 215 Solar radii

1 Solar radius = 6.95 x 105 km

1 arcsec = 4.85 x 10-radians

By definition, 1 Mxcm2=1 G

Bohr magneton, Ug = 9.27 X 102 ergs G-1

~ Planck constant, h=6.63 x 10%7erg s
Speed of light, c=3x 108 m s-1

Ampere’s law, VX B = loJ

By conversion, 1 Joule = 107 ergs
Boltzmann constant, ks = 1.38 x 10-16 erg K1
Energy gained by an electron across 1 volt, 1eV =1. 6 X101 J
Mass of a proton, mp = 1.67 x 1024 g




1: This cjuestnon asks you calculate the velocity of the jets in Figure 1.
(|) Using basic geometry, show that that the angle subtended by the Sun is 1920 arc sec

. 5 points
(i) Use figure 1 to show that the velocity of the jet is consistent with the stated value of
"206 km s, 10 points

2: This question asks you to discuss the data presented in Figure 2
(i) The IRIS data in Figure 2 are stated to have a spatial resolution of 250km. Calculate

the diameter of the IRIS telescope mirror. 10 points
(iiy The third ionization potential of Si is 33.5ev. Show this is consistent with a Transition
" Region temperature of 105 K. 10 points

(iii) The chromospheric Fraunhofer lines appear almost exclusively in absorption. Why
do the Transition Region far-UV lines appear in emission, and, as such, what is the
likely excitation mechanism for these far-UV lines? 5 points

3.The question probes your knowledge of spectroscopic techniques as applied to
Figure 3D and 3E.
(iy Assume the observed Gaussian fine profiles are probing a combination of two
Gaussian profiles - thermal and non-thermal broadening. The FWHM of such a
Gaussian profile is about 2.40. Thermal broadening is determined as vin = ( (2KT) /
(mion) )9 where the mass of the Silicon lon is 4.6 x 10-2 g. Use Figure 3D to calculate
the non-thermal velocity at location 2 and show this is greater than the value quoted in
the abstract.

15 points
(i) In this article, the authors attribute the non-thermal component to (transverse) Alfven
waves (bottom of page 3 and top of page 4). Discuss two contributions to the observed
line widths in Figure 3 that have we neglected in 3(i) above. 5 points

4. This question addresses the conclusion that these jets provide sufficient mass
for the solar wind
(i) Show that the general equation for mass loss rate M, given below, through a sphere
is dimenswnally consistent. . 5 points

= (Surface area of sphere) x (mass densuty) X (velocity) fi X fs ,
where fs is a dlmensnonless space-filling factor and f; is a dimensionless time-filling
factor, both of which will between 0 and 1. :
(i) Comment on why the authors require fs and fi,and use the values provided (Figure 1
and midway thru page 3) to show a time filling factor of about 10% is appropriate.

15 points

(iif) Using values provided in Fig 1 to calculate the stated mass loss rate of 2-30 x 1012
g s’'. You can assume a space filling factor of about 0.1% fo 1% for these jets over the
solar surface, a typical jet electron number density of ne=10" cm-2 | and a reasonable
coronal Helium abundance of 5% (neglecting all other metals). 10 points
(iv) The solar wind density measured at Earth is 5 protons cm3, with a solar wind
velocity of about 600 km s . Show this results in a flux of about 5 x 10-'¢ g s cm2 at
Earth, and hence calculate an estimate for the total solar wind mass rate which is 2-24
lower than provided by these jets, as stated in the paper. 10 points
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" SOLAR PHYSICS

Prevalence of small-scale jets from
the networks of the solar transition
region and chromosphere

H. Tian,* E. E. DeLuca,’ §. R. Cranmer, B, DePontleu, H. Peter,® J. Martinez—Sy’kbra.,

%]

L. Golub,' S. McKillop,! K.K.Keeves, M., P, Miralles,! P. McCauley,’ S. Saar, P. Testa,!
M. Weber,! N. Murphy, J. Lemen,? A, Title,2 P, Boemer,’“ N. Hurrburt, T.D. Tarbell,
J. P. Wuelser, L. Kleint,>* C. Kankelborg,® S, Jacggli,* M. Carlsson,®

V. Hansteen,® S. W, MciIntosh’

As the interface between the Sun's photosphere and corona, the chromosphere anid
transition region play a key role in the formation and acceleration of the solar wind.
Observations from the Interface Region Imaging Spectrograph reveal the prevalence of
jntermittent small-scale jets with speeds of 80 to 250 kilometers per second from the

narrow bright network fanes of this interface region. These jets have lifetimes of 20t

80 seconds and widths of =300 kilometers. They originate from smalt-scale bright
regions, often preceded by footpoint brightenings and accompanied by transverse
waves with amplitudes of ~20 kilometers per second. Many jets reach temperatures
of at least ~10° kelvin and constitute an important element of the transition region
structures. They are likely an intermittent but persistent source of mass and energy

for the solar wind.

heSan continuously emits ionized particles
into interplanetary space in the form of the
solar wind. A challenging investigation has
now carried on for almost 50 years to un-
derstand where the solar wind originates
and how it is accelerated (7, 2). Dark regions in
coronal images indicate the coronal holes that
are the commonly accepted large-scale source
regions of the high-speed solar wind. However,
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identifying precise origin sites within coronal
holes requires high-resolution observations of
the chromosphere and transition region (TR}, a
complex interface between the relatively cool pho-
tosphere (~6 x 10° K) and hot corona (~10% K).
The mass and energy that ultimately feed the
solar wind must pass through this region.

The dominant emission features in this inter-
face region are the network structures that ap-

pear as narrow bright lanes enclosing dark cells,
with sizes of ~20,000 km in radiance images of
emission lines (3}, The network lanes (networks
thereafter) are believed to be locations of strong
magnetic fluxes originating from the boundaries
of convection cells with similar sizes in the pho-
tosphere, Previous observations of coronal holes
with the Solar Ultraviolet Measurements of Emitted
Radiation (SUMER) instriument (4) onboard the
Solar and Heliospheric Observatory (SOHO) re-
vealed Doppler blue shifts of 5 to 10 km s™ for
emission lines formed in the upper TR (5). They
were interpreted as signatures of the nascent
solar wind guided by funnellike magnetic struc-
tures originating from the networks (5).

Recent analyses revealed weak blue wing en-
hancements in profiles of emission lines formed
in the TR (7 8). These weak c¢nhancements
indicate the possible presence of a plasma com-
ponent flowing upward with speeds of 50 to

-|--100-ken-5=% which-may-provide-heated-mass-to
the solar wind (8). It has been difficult to test this
proposed idea without direct imaging of such TR
upflows on the solar digk, although moderate-
resolution observations have revealed signatures

"Harvard-Seithsonian Center for Astrophysms 60 Garden
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Astrophysics Laboratory, 3251 Hanover Street, Organization
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Institute for Solar Systern Research, Jusius-von-liebig-Weg 3,
37077 Gattingen, Germany. *Bay Area Ervironmental Research
institute, 596 1st Street West, Scnoma, CA 95476, USA.
Departrent of Physics, Mortana State University, Post Office
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Fig. 1. Examples of network jets. (A) An unsharp masked (SM} 1330 A slit-jaw image (movie S3). The dashed line marks the path of a jet. {B) Space-time plot
for the jet marked in (A). (C) Distributions of the apparent speeds and lifetimes for 63 jets. The average (a) and standard deviation (s) values are also shown.
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Fig. 2. (A and B) Two unsharp masked 1330 A slit-jaw images showing the origin of network jets
from smalfl-scale bright regions in the network (movie S4). The red lines outline two jets.
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of chiromospherie itpflows being heated to TR tem-
peratures at the solar limb in a coronal hole (9).

Using observations from the Interface Region
Imaging Spectrograph (IRIS) (10), we report re-
sults from direct imaging on the solar disk of
high-speed upflows with apparent speeds of 80
to 250 km s™. Thanks to the high resolution
(~250 km) in new wavelength windows, IRIS slit-
jaw imaging observations with the 1400, 1330, and
2796 A filters {see the supplementary materials
(5M)] unambigucusly reveal the prevalence of
small-scale jetlike emission features from the
bright networks (figs. 81 to 83 and movies 81 and
82), These three filters sample emission from the
8i IV, C 11, and Mg II fons, which are formed at
temperatures of ~10° K, ~3 x 10* £, and ~10* K,
respectively. These network jets usually show fast
upward motion with no cbvions downward com-
ponent. Although these jets are more easily seen
in coronal holes located near the solar limb

--{movies-St-te-95); they-are-clearly detected-at- oo

any location on the solar disk outside active re-
gions (movie S6).

These network jets are best seen in 1330 A
images, The jet widths are nsually around ~300 km
and approach the instrument resolution limit,

D
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Fig. 3. Signatures of network jets in Si [V 1393.77 A line profiles (movie $5). (A) Unsharp masked 1330 A slit-jaw image taken at 07:33:55 UT on 23
January 2014, (B and C) Temporal evolutizn of the intensity and line width along the slit from a Gaussian fit of Si IV line profiles. The vertical line indicates the
slit location in (A} and time of 07:33:55 UT in (8) and (C}. {D and E} Observed line profifes (black) at the two locations indicated by the arrows. Red lines are the

Gaussian fits. —
. I
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" suggesting that the actual widths of many jets

may be even smaller. By applying the space-time
technique (SM) to the 1330 A image sequence
obtained on 23 January 2014 (table S1 and movie
§2), we have quantified the apparent speeds and
fifetimes for 63 randomly selected jets (Fig. I). The
speeds fall mostly in the range of 80 to 250 km s,
which is much larger than the sound speed and
close to the Alfvén speed in the chromosphere
(21) and TR. These velocities are significantly
larger than previously reported jet velocities in
the chromosphere and TR (2-16). Some jets also
show signatures of acceleration. Their lifetimes
range mainly from 20 to 80 s. Most jets extend to
lengths of 4 to 10 Mim (1 Mm = 10° m), although
some clearly reach ~15 Mm.

Many network jets also exhibit obvious mo-
tions transverse to their propagation direction,
indicating that they carry transverse magne-
tohydrodynamic waves known as Alfvén waves

(11, 17). The wave magnitudes are difficult to mea-~ |-

sure from slitjaw images, because strong emission
from other features complicates the quantification
of the transverse displacement, and the jet lifetimes
are usually too short to allow the detection of a
full wave cycle. Instead, we use spectroscopic
observations to estimate the approximate veloc-
ity amplitudes of Alfvén waves. The root-mean-
square value of the fluctnating Doppler shift of
the Si IV 1393.77 A line is ~5 km 5™, which can be
regarded as the resolved wave amplitude (SM
and fig. 85).

Many of these network jets are likely the
on-disk counterparis and TR manifestation
of type II spicules (SM), which are jetlike features
moving upward with speeds of 50 to 110 km s™

“in the chromosphere above the solar limb (75, 16).

Our direct imaging of flows along these jets on
the solar ¢isk is almost unaffected by line-of-
sight superposition, thus providing further sup-
port for the debated existence of high-speed
jetlike features (16, 18), IRIS observations also
reveal their origin in the networks, which off-
limb observations cannot determine. Yet we no-
tice that network jet velocities are generally twice
those of type II spicules, suggesting that the net-
work jets sampled by the TR passbands are those
being heated and accelerated in the upper chro-
mosphere and TR (29) and/or that the apparent
speeds we observe here are not all cansed by mass
flows. Additional absorbing components at the
blue wings of some chromospheric absorption
lines were previously claimed to be on-disk count-
erparts of type II spicules (13). These features
with speeds of 20 to 50 km s~ are probably the
lower-temperature parts and/or less-accelerated
-phase of the network jets. :

Many network jets tend to recur at rmighly the -

same locations on time scales of ~2 o 15 min. Our
on-disk observations show that these jets origi-
nate from localized bright regions in the networks
(Fig. 2 and movie 54). Sometimes we see obvious
brightening at the footpoints of these jets. A few
jets appear to reveal the characteristic inverted
‘¥-shape morphology (Fig. 2B) that is associated
with a bipolar magnetic field line reconnecting
with a unipolar large-scale field (72). These char-
acteristics, together with the high speeds, suggest
that some of these intermittent jets may result
from repeated magnetic reconnection (20) between
small magnetic Joops and the background open
flux in the networks. It is also possible that the

B Peak Intensity

source regions of these jets are too small to be
resolved by IRIS, or that other mechanisms (SM)
such as flux emergence and the associated Lorentz
force are responsible for the acceleration of the
Jets (21
Spectroscopic observations from IRIS reveal
that many jets reach temperatures of at least
~10° K, the formation temperature of the 5i IV
1393.77 A line under ionization equilibrium. The
most prominent signature of network jets in 8i
IV line profiles is a significant increase of the line
broadening, which coulé be a consequence of
field-aligned flows (22) or unresolved transverse
motions such as Alfvén waves (23) and twists (24).
Combined imaging and spectral observations of
IRIS can help evaluate the contribution from
field-aligned flows and transverse motions.
Greatly enhanced widths of the Si IV line are
_ found around two locations of network jets (Fig. 3).
The slit crosses the lower part of a recurring jet

|- complex at location 1. There the obvions enhance-

ment of the line profile at the blue wing (Fig, 3D
and SM) indicates an association with the net-
work jets visible in the slitjaw images (movie 85).
Thus, the enhanced line broadening here is large-
ly caused by the superposition of the field-aligned
flows (jets) on the network background.

" Location 2 corresponds to the upper part of
some swaying network jets {movie 55). Given the
nearly symmetric line profile and that this region
is close to the limb, these jets are likely propa-
gating largely in the plane perpendicular to the
line of sight. So the line broadening appears to
be largely caused by unresolved Alfvén waves,
or small-scale twists that are often associated
with unresolved torsional Alfvén waves (25). If we
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Fig- 4. TR filamentary structures caused by network jets (movie S6). (A) An unsharp masked 1330 A slit-jaw image. (B and €) Maps of intensity and fine
width from a Gaussian fit of Si IV 1393.77 A line profiles. The vertical ling indicates the slit location.
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—alljet plasmarcontributes to-the-solar- wind-(SM)-—

attribute the nonthermal width (SM and fig. 85)
o these unresolved waves, the wave amplitude is
estimated to be ~21km 57

Intensity and linewidth maps of $i IV (Fig. 4)
reveal details of the TR struciures. One promi-
nent feature of these maps is the presence of
flamentary or elongated structures. Comparing
these maps with the slit-jaw images (movie 56)
reveals an association of many such features with
network jets. Depending on viewing angles, en-
haneed line widths in these filamentary siructures
could be caused by either the superposition of jet
emission on the network background, or unre-
solved transverse motions, or both. This associ-
ation reveals that network jets constitute an
important element of TR structures (SM).

These jets are likely to be an intermittent but
continual source of mass and energy for the solar
wind. We find a total mass loss rate of (2.8 o
36.4) x 10 g 57 for these jets if we assume that

This value is about 2 to 24 times larger than the
total mass loss rate of the solar wind, yet we have
to remember that it is difficult to determine the
true contribution to the solar wind without suf-
ficiently sensitive coronal observations. With a
wave amplitude of ~20 km 57, the energy flux
of Alfvén waves carried by the jets should be 4
1o 24 KW m™* (SM). This is much larger than that
required to drive the solar wind {~700 W m™),
yet we do not know how much of this energy is
dissipated.

The prevalence of these network jets may
challenge current solar wind models. Most time-
steady descriptions of the sotar wind (7, 26) rely
on mass flux driven by evaporation from the
upper TR, induced by a combination of down-
ward heat conduction from the corona and local
radiative losses (27). Although successfully pre-
dicting the coronal heating and wind properties
at Earth, these models usually produce steady
flows of only a few kilometers per second in the
chromosphere and TR. Such steady low-speed
outflows have never been imaged.

In contrast, our IRIS observations reveal the
presence of intermittent high-speed upflows from
the networks, If the mass in these jets actually is
lost in the solar wind, then models must be
updated to account for this highly intermittent
companent. A proposed reconnection-driven solar
wind model {6) may be consistent with our ob-
servations. This scenario, which involves recon-
nection between open field lines in the network
and surrounding lowlying loops, has been sim-
nlated numerically (28). However, the maximum
outflow veloeities produced by this model are only
~30 km 57, and it is unclear whether the entire
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hass and energy fiti of the wind canbe’ produced
in this way (29).

If these jets are not the nascent solar wind,
at least their interaction with the wind should
be considered in solar wind models, because
they are the most prominent TR features in the
networks where the wind is believed to originate.
One recent model does indade some upward and
downward motions of the TR plasma (30). How-
ever, these motions have speeds of ~60 km s~ at
most, and the jets we observe show mukch faster
upward motions, Obviously, a successful solar
wind model must carefully evaluate the mass and
energy contributions from these network jets.
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