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Cume: #400

Passing grade for the cume is 70 points

1. 20pt Two flat cosmological models at redshift z = 0 have the same Hubble constant and
the same spectrum and amplitude of perturbations. One model has a cosmological constant
4 = 0.7, another does not have the cosmological constant (4 = 0). Which model predicts
more clusters of galaxies at redshift 17

Answer: The number-density of clusters of galaxies depends on the amplitude of perturbations
on cluster scales: the larger the amplitude, the larger is the number of clusters to form.
Thus, the model, which predicts the largest amplitude of perturbations, is the model with
more clusters. In turn, the growth-rate of perturbations é{a) depends on the density of matter
Qmatter (@), where @ = 1/(1+2) is the expansion parameter. For the plain-vanilla cosmological
model (a) §(a) x a. This is the fastest growth possible. In the LCDM the fraction of mass
in matter was declining with time resulting in slowing down the growth of perturbations.
Once models are normalized to the same amplitude of perturbations at z = 0, the model
with the cosmological constant will have the largest Qmagter at 2 = 1, the largest amplitude
of perturbations, and, thus, the largest abundance of clusters of galaxies.

2. 20pt The plot on the first page (#1) shows the power spectrum of density fluctuations in the
Universe P(k). The full curve is the LCDM theory and symbols are observations. Note that
the axes have funny units. The comoving wave number £ is in units of h/Mpc and the power
spectrum is in units of (h~?Mpec)~®. Masses are typically presented in units of mass h~! M.
Here h is the Hubble constant in units of 100 km/s/Mpec. Explain why each of the measured
quantities of P(k), mass, and wavenumbers scale with the Hubble constant in this way.

Answer: This is all about measuring distances using the Hubble flow: V = Hr. The recession
velocity is measured observationally, and it does depend on H. We then get the distance
R =V/H oc h™!. If mass of an astronomical object is measured dynamically, it scales as
M o« v*R/G, where v is a measure of random velocities in the object and R is its radius.
Then v is measured observationally (e.g., los velocities in groups of galaxies, or temperature
of gas in clusters of galaxies).Then, M «x R « A™!. Wavenumber is k¥ = 27/) o« h. The
power spectrum FP(k) is defined in units of inverse volume. Thus, the scaling is P o h3 L

3. 10pt Plot #1 shows only a fraction of all wavenumbers. Draw a diagram of the power ,-4r 2|
spectrum from very low wavenumbers (very long wavelengths) to very large wavenumbers.
Indicate slopes dlog 2/dlog k of the power spectrum on long and short waves.
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4. 20pt Figure #2 on the second page shows the correlation function of galaxies £(r) for galaxies
similar to our Milky Way. As you can see, it is reasonably well approximated by a power
low on scales from 100 kpc to 20 Mpc. Using these results and assuming that the number-
density of galaxies is n = 1072h3Mpc—3, estimate the average number of galaxies inside a
sphere of radius R = 10h~'Mpc for {a) randomly selected point in space and (b) randomly
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selected galaxy. To make calculations easier, assume that the correlation function is equal to
£(r) = (r/5h T Mpc)~ 8.

Answer: For randomly selected point in space the number expected galaxies is simply N =
nV = 40. By definition, the correlation function £ is the number of galaxies in excess of
random at distance r: dN = n(l + £(r))dV. The total number of galaxies inside radius R
is just an integral: N = 4mn fom(l + £)r2dr. We already found the first contribution to this
integral. The contribution due to ¢ is 4wn5%(10/5)12 & 30. So the total number of galaxies
is 70.

. 20pt Correlation functions are measured in redshift space with the coordinate along the line
of sight being r = Vigs/H, where Vs is the line-of-sight velocity. This leads to distortions
in the correlation function and power spectrum. You can see manifestations of these redshift
distortions in Fig #3 and #4, which show two-dimensional correlation function £(o, 7), where
o is the distance between a pair of galaxies in the plane of the sky and = is the distance along
the line of sight. Without distortions contours of constant £ should be circles, and they are
clearly not circles in the plots. {a) What is the nature of these distortions? (b) There are two
physical processes that produce those distortions. Name and explain those.

Answer: The origin of the redshift distortions is in the fact that galaxies do not move in
perfect Hubble flow but have some deviations called peculiar velocities Viecutiar- The true
velocity along line-of-sight is V' == Hr 4 Vjeculiar. In observations we do not know how large
is the peculiar velocity. This gives an error in the distance: s = 7 + Vjecyliar/u, Where s is
the redshift space distance. There are two sources of the peculiar velocities. On large scales
(> 2Mpc) galaxies experience infall on large forming clusters and superclusters. This results
in negative relative peculiar velocities, which, in turn, makes ¢ smaller than ». In figure #3
this is observed as flattening of contours of &(o, 7) at 10-20Mpc distances. At small distances
the dominant process is called the “finger-of-god” effect. It is related with large random
peculiar velocities of galaxies in virialized objects such as clusters and groups of galaxies.
These large random velocities produce large deviations along the line-of-sight at distances
< 2Mpe.

. 10pt Figure #4 on the 4-th page shows the 2-dimensional correlation function £(e, ) for
blue and for red galaxies. There is a striking difference between those at small distances
o < 2h~ ' Mpc. Please, explain these differences.

Answer: In dense virialized object galaxies tend to be early-type ellipticals or S0’s. Thus,
when we select red galaxies, we preferentially select galaxies inside dense environments where
peculiar velocities are larger. This produces significantly stronger elongation of £(o, 7) along
the line-of-sight.
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Figure 8. The CMASS DR power spectra before (ieft) and after (right) reconstruction with the best-fit models overplotted, The vertical dotted lines show. .
the range of scales fitted (0.02 < k < 0.3 h Mpe~1), and the inset shows the BAO within this F-range, determined by dividing both mode! and data by the

_ best-fit model calculated (including window function convolution) with no BAO Error bars mdxcate \/ U,,, f‘or the pnwer spectrum and the ms error ca]culated
from fitting BAQ to the 600 mocks in the inset (see Section 4.2 for details). o - et A e
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" Fio. 7—Real-space correlation function &(r) for the flux-limited galaxy
sample, obtained from w,(r,} as discussed in the text. The sclid and dotted lines

show the corresponding power-law fits obtained by fitting w,(#,) using the full
covariance matrix ot just the diagonal elements, respectively.
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Figure 5. Contours of the two-dimensional correlation function &(o, 71)

estimated from the DR9 BOSS-CMASS north galaxy sample (dashed con-

tours) at 0.4 < z < 0.7 and for our MultiDark halo catalogue constructed
using the HAM technique at z = 0.53 (solid contours).







2y4 u

SN

/S ou

adp,

o 2jbuy
0z oL 0

SO|BDS

|ews uo
[P O3-J0-193Ul}, :SUONIOISIP PIYSPY







