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This exam is based in part on the paper “The hot limit of solar-like oscillations from Kepler photometry”
by Luis Balona (2020). You might have noticed that this paper was discussed in astro-ph a week ago. The
exam covers some of the physics of stars and their interiors, a little bit about Kepler data, and some of the
methods of signal analysis. The anticipated passing grade is 75%.

Please use a new page for each numbered problem. Show all work clearly and please write legibly, and if
you can’t solve something completely, at least give an idea of how you might go about it. Make sure you are
careful to answer ALL parts of each question. Don’t spend too much time in the beginning on one question,
move on and try them all and then come back if you need to.

This is a remote exam and you are not allowed to use any materials, such as books or websites or your com-
puter (except for emailing a question if needed). You may use a calculator for any arithmetic computations
only, not for plotting or algebra or for storing equations.

If any clarification questions are needed, just call me. Good luck!

Here are a few useful things you may need:

e Radiative temperature gradient (using ideal gas equation of state, neglecting radiation):
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All symbols should be recognized, with x the opacity, and p the mean molecular weight.

e Adiabatic temperature gradient:

e The I' is known as the adiabatic exponent, and is also the ratio of specific heats: I' = Cp/Cy. For an
ideal gas, Cp = 5R,/(2p) = 5/3 - Cv, where R, is ideal gas constant.

e The angular frequency of a periodic signal w is related to the cyclic frequency f by w = 27v.

e The power spectrum of a time-varying signal z(t) is P(w) = 2*(w)z(w), where z(w) is the Fourier
transform of x(¢). To obtain the true amplitude of any periodicities in the signal, the amplitude
spectrum is simply 4/ P(w).

e Trig identity: sin?(x) = 0.5[1 — cos(2z)].
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Figure 1: Each panel shows the adiabatic (ad) and radiative (rad) temperature gradients of a zero-age main-sequence
stellar model. The mass of the stellar model is different in each panel. The bottom z-axis is the log of the temperature
over the entire model. Also shown on the top of each panel is the corresponding radial coordinate from 7 = 0 to r = Rx.

Note that t

he y-axis is truncated.

1. (20 points). Classical pulsations, such as those observed in § Scuti, v Doradus, Cepheids, RR Lyrae,

etc.,

are those driven by opacity mechanisms. Solar-like oscillations in stars, on the other hand, are

stochastically driven by near-surface turbulent convection. This process mainly occurs in the Sun and
other stars with certain similar properties to the Sun. This paper explores the possibility of both types
being present (simultaneously or not) in some hot main-sequence stars.

(a)

(3 points). See Figure 1 of the paper. In which evolutionary states (not spectral types) of stars
are solar-like oscillations primarily found to be observed? Name 3 of these states.

(2 points). Physically speaking, describe what the radiative temperature gradient is for a stellar
interior.

(3 points). What are the energy transport mechanisms in the interior regions where V,,q > Vaq,
and also when V.4 > V,.q7

(3 points). See Figure 1 of the exam. Which panel, top or bottom, is the higher-mass model?
Give a specific reason why you made this choice.

(2 points). Pick one of the two models. Describe one possible reason for the large radiative
gradient increase?

(4 points). Describe quantitatively the behavior of the adiabatic gradient in either model, both in
the deep interior (why 0.47) and in the outer layers.

(3 points). The paper mentions a “hot edge” for solar like oscillations to exist in main-sequence
stars. Why do you think there must be such a limit?



2. (9 points). In time-domain astronomy, one samples a signal coming from some object at regular
intervals, say, with a time cadence dt. If there are periodicities in the signal, the Nyquist frequency
(let’s denote it vy) is the maximum frequency at which you can retrieve information. It is equal to
half the sampling frequency. Let’s denote the sampling frequency vsg.

(a) (2 points). Firstly, how would you express vy in terms of vs? Then, how would you express vg in
terms of dt?

(b) (3 points). Now, show that the temporal Nyquist frequency of Kepler long-cadence data is about
24 cycles per day, as is mentioned in the paper.

(¢) (2 points). What is the Nyquist frequency (in cycles per day) of Kepler short-cadence data, which
is obtained every dt = 1 minute? Show your work.

(d) (2 points). The Sun acoustic oscillations have 5-minute periods, and we been observing these
oscillations with various instrumentation for 60 years. What is the maximum time cadence that
any of these instruments can have to be able to observe these modes and satisfy the Nyquist
criterion?



3. (13 points). Let’s try to understand the autocorrelation of a signal a little better, which is an important
quantity in time-domain astronomy. We’ll consider a continuous signal (y) over a finite interval (+27):
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where 7 is the time lag. To keep things really simple, consider a simple sinusiodal signal y(t) = sin(wt),

with angular frequency w = 1rads™!.

(a) (3 points). What is the cyclic frequency of this signal? What is its period?

(b) (5 points). The autocorrelation is always maximal at a time lag 7 = 0. First, draw the integrand
of C(7 = 0) with proper axes over the interval. Then compute the numerical value for C(7 = 0).
Show all work.

(¢) (5 points). What is the autocorrelation value at a lag of +m/27 Again, sketch this scenario, and
then show your work to derive and/or argue the value.



4. (13 points). The paper uses some confusing language describing its use of autocorrelations and power
spectra. Let’s use a simpler example than a real star to learn a bit more about signals buried in the
data. See Figure 2 of the exam. A signal with 5 “solar-like oscillations” and some random noise was
simulated (top panel). The signal obeys the equation in the paper (Section 3) for the asymptotic limit.
Imagine this is a light curve of a star. Various quantities are then calculated from that light curve,
given by the other panels. The title shows what quantity the panel contains. Use the figure to answer
the following questions.

(a) (5 points). What are frequencies v; and amplitudes A; for the 5 oscillations? Order them in
increasing frequency. Approximate values are fine, so just eyeball it.

(b) (4 points). What is the approximate value of the large frequency spacing Av? Explain how you
obtained this value (which numbers and/or which plots?).

(¢) (2 points). What is the significance of the vertical line in the bottom panel? Explain why it has
the value it has?

(d) (2 points). Does this simulated light curve more closely resemble that of a § Scuti or of a
Doradus star? Why?
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Figure 2: The top panel is a simulated light curve with 5 frequencies. The remaining panels are computations from the
signal, given in the title. See question 4.



