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This exam deals with some fundamental, basic mathematics that can occur frequently in astrophysics re-
search. In fact, all of these problems are loosely related to topics that have arisen in my daily research or
course preparation over the past 18 months and scribbled in my notebooks, in one form or another. These
topics cover things that aren’t always trivial to just “look up” to find the right answer. The anticipated
passing grade is 75%.

Show all work clearly and please write legibly, and if you can’t solve something completely, at least give an
idea of how you might go about it. Make sure you are careful to answer ALL parts of each question. Don’t
spend too much time in the beginning on one question, move on and try them all and then come back if you
need to. No calculators allowed please. Good luck!

Here are a few things you may need.

• Matrix multiplication.
C “ AB; cij “

ÿ

k

aikbkj . (1)

• Taylor expansion.

fpxq « fpaq ` f 1paqpx´ aq `
1

2
f2paqpx´ aq2 ` . . . (2)

• Internal energy density of an ideal gas (energy per unit volume):

u “
3

2
nkBT, (3)

where the terms are particle density, Boltzmann’s constant, and temperature.

• Specific internal energy (energy per unit mass): U “ u{ρ, where ρ is mass density.

• dm “ 4πρr2dr

• P “ nkBT .

• The continuity equation, which expresses mass conservation of a fluid in some given volume:

∇ ¨ pρvq “ 0, (4)

where ρ is mass density and v is the fluid velocity. ρv is the mass flux.

• Divergence operator in spherical coordinates pr, θ, φq for generic vector A “ pA1, A2, A3q:

∇ ¨A “
1

r2
B

Br

`

r2A1

˘

`
1

r sin θ

B

Bθ
psin θA2q `

1

r sin θ

BA3

Bφ
(5)

• Curl operator in spherical coordinates pr, θ, φq for generic vector A “ pA1, A2, A3q:

∇ˆA “
1

r sin θ

„

B

Bθ
psin θA3q ´

BA2

Bφ



ê1

`

„

1

r sin θ

BA1

Bφ
´

1

r

B

Br
prA3q



ê2 `
1

r

„

B

Br
prA2q ´

BA1

Bθ



ê3 (6)

• Discrete Fourier transform of a signal fptq and its inverse, where in this case ω is the angular frequency:

fpωq “

ż t2

t1

fptqeiωt dt, (7)

fptq “

ż ω2

ω1

fpωqe´iωt dω (8)



1. (10 points).

(a) Let A “

„

1 0 ´1
2 0 ´2



and B “

»

–

1 0
1 ´1
2 1

fi

fl. Compute C “ AB

Answer: This is a 2x2 matrix. C “

„

´1 ´1
´2 ´2



.

Or,

c11 “ a11b11 ` a12b21 ` a13b31 “ ´1

c12 “ a11b12 ` a12b22 ` a13b32 “ ´1

c21 “ a21b11 ` a22b21 ` a23b31 “ ´2

c22 “ a21b12 ` a22b22 ` a23b32 “ ´2

(b) Let A “
“

1 2 1
‰

and B “
“

1 0 ´1
‰

. Compute C “ ATB, where T is the transpose.

Answer: This should be rewritten as

»

–

1
2
1

fi

fl ¨
“

1 0 ´1
‰

.

It is a 3x3 matrix. C “

»

–

1 0 ´1
2 0 ´2
1 0 ´1

fi

fl. Or,

c11 “ a11b11 “ 1

c12 “ a11b12 “ 0

c13 “ a11b13 “ ´1

c21 “ a21b11 “ 2

c22 “ a21b12 “ 0

c23 “ a21b13 “ ´2

c31 “ a31b11 “ 1

c32 “ a31b12 “ 0

c33 “ a31b13 “ ´1

(9)
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2. (10 points).

(a) Find a second-order approximation to the function fpθq “ cos θ about the point θ “ π.

Answer: From Taylor’s theorem

fpθq « cosπ ´ sinπpθ ´ πq ´
1

2
cosπpθ ´ πq2 (10)

« ´1´ 0`
1

2
pθ ´ πq2 (11)

« ´1`
1

2
pθ ´ πq2. (12)

(b) Now sketch cos θ and your approximation from θ “ π{2 to θ “ 3π{2 as accurately as possible
(primarily the mid and end points).

Answer: The approximation works well at π but not at the end points. Where cos θ “ 0 at the end points,

our approximation is instead fpπ{2, 3π{2q “ ´1` π2
{8 ą 0.
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3. (8 points). Compute the value of the definite integral

I “

ż 1

ε

9x2 lnx dx, (13)

where ε is an extremely small number. Hint: integrate by parts.

Answer:

u “ lnx ; dv “ 9x2dx

du “
1

x
dx ; v “ 3x3

I “ 3x2 lnx|1ε ´

ż 1

ε

3x2 dx

“ 0´ x3|1ε

“ ´1.
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4. (10 points). The Virial Theorem tells us that the gravitational potential energy (say, Eg) plus twice the
total internal energy (say, UT) is zero for a star that’s an ideal gas. The Virial Theorem can be derived
conveniently from the equation of hydrostatic equilibrium. Do this by multiplying both sides of the
equation of hydrostatic equilibrium by 4πr3 and integrating both sides from 0 to R, i.e., from the star
center to the surface. You should be able to arrive at one of the main terms on the right-hand-side of
the equation with minimal work. For the left-hand-side, integration by parts may be helpful at one
stage. If you use any simplifications or approximations, please point them out.

Answer: The Virial Theorem thus says that Eg ` 2UT “ 0. Following the prescription,

dP

dr
“ ´ρg “ ´ρ

Gm

r2
ż R

0

4πr3
dP

dr
dr “ ´

ż R

0

4πr3ρ
Gm

r2
dr

u “ 4πr3 ; dv “
dP

dr
dr

du “ 12πr2 dr ; v “ P

4πr3P |R0 ´

ż R

0

12πPr2 dr “ ´

ż R

0

Gm

r
4πρr2 dr

P pRq ´ 0´

ż R

0

3
P

ρ
4πρr2 dr “ ´

ż M

0

Gm

r
dm

´3

ż M

0

2

3

u

ρ
dm “ Eg; P pRq Ñ 0

´2

ż M

0

U dm “ Eg

´2UT “ Eg

Eg ` 2UT “ 0.

If, in the above, one did not switch to the mass coordinate on either side, and used the internal energy density
instead,

´

ż R

0

12πPr2 dr “ Eg

´

ż R

0

12
2

3
πr2u dr “ Eg

´2

ż R

0

u4πr2 dr “ Eg

´2
y

u dV “ Eg

Eg ` 2UT “ 0.
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5. (10 points). Consider a three-dimensional fluid in spherical coordinates that obeys the continuity
equation everywhere. The mass flux can then be conveniently expressed as

ρv “∇ˆ ψφ̂, (14)

where ψ is simply a scalar function that only depends on position ψ “ ψpr, θ, φq. ψ is sometimes known
as a “stream function.”

(a) First, quickly show/describe/argue that if the mass flux satisfies the continuity equation, then it
is always possible to write an expression like the right-hand-side of Eq. (14). You don’t necessarily
have to compute the divergence here.

Answer: If ∇ ¨ ρv “ 0, then we can always take the divergence of the curl operator since the curl operation

returns a vector perpendicular to ∇, whose divergence is automatically zero.

(b) Now, using Eq. (14), find expressions for each component of the full 3-D velocity field v “
pvr, vθ, vφq in terms of the stream function ψ.

Answer:

ρvr “
1

r sin θ

B

Bθ
pψ sin θq

“
1

r sin θ

ˆ

ψ cos θ ` sin θ
dψ

dθ

˙

“
1

r

cos θ

sin θ
ψ `

1

r

dψ

dθ
.

ρvθ “ ´
1

r

d

dr
prψq

“ ´
1

r

ˆ

ψ ` r
dψ

dr

˙

“ ´
ψ

r
´

dψ

dr
.

Then,
ρvφ “ 0,

since there is no component parallel to the φ̂ direction due to the definition of the stream function.
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6. (15 points). Say you have recorded a signal from observations from t “ 0 to t “ T . The signal has
a functional form given by xptq “ A expp´iω0tq, where ω0 is a single, angular frequency and A is the
amplitude.

(a) Assuming that T " 1{ν0 " pω0{2πq
´1, sketch the real part of your signal as accurately as possible,

with axes labeled (ν0 is the corresponding cyclic frequency).

Answer: This is just a cosine function that has ν0 of oscillations in time T , with amplitude ˘A.

(b) Now sketch the real part of the signal assuming that T ă 1{ν0 ă pω0{2πq
´1, again, with everything

labeled.

Answer: This is a cosine function that doesn’t go through a full period since P “ 1{ν0 ą T ..
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(c) Compute the power spectrum of your signal. The power spectrum is given by P pωq “ |xpωq|2,
where xpωq is the (complex) Fourier transform of the signal. Show that it’s

P pωq “
2A2

pω ´ ω0q
2
r1´ cos ppω ´ ω0qT qs . (15)

or, equivalently,

P pωq “ A2T 2 sinc2
„

ω ´ ω0

2
T



. (16)

Answer:

xpωq “ A

ż T

0

e´iω0teiωt dt

“ A

ż T

0

eipω´ω0qt dt

“ A
eipω´ω0qt

ipω ´ ω0q
|
T
0

“ ´
iA

ω ´ ω0

”

eipω´ω0qT ´ 1
ı

x˚pωq “
iA

ω ´ ω0

”

e´ipω´ω0qT ´ 1
ı

.

So then

P pωq “ |xpωq|2 “ x˚pωqxpωq

“
A2

pω ´ ω0q2

”

1` 1´
´

eipω´ω0qT ` e´ipω´ω0qT
¯ı

“
2A2

pω ´ ω0q2
r1´ cos ppω ´ ω0qT qs .

Alternatively, one may have factored out an exponential in a preceding step to arrive at a different Fourier
transform:

xpωq “ ´
iA

ω ´ ω0

”

eipω´ω0qT ´ 1
ı

“ ´
iA

ω ´ ω0
e

i
2
pω´ω0qT

”

e
i
2
pω´ω0qT ´ e´

i
2
pω´ω0qT

ı

“
2A

ω ´ ω0
e

i
2
pω´ω0qT sin

´ω ´ ω0

2
T
¯

x˚pωq “
2A

ω ´ ω0
e´

i
2
pω´ω0qT sin

´ω ´ ω0

2
T
¯

Then

P pωq “ |xpωq|2 “ x˚pωqxpωq

“
4A2

pω ´ ω0q2
sin2

´ω ´ ω0

2
T
¯

“ A2T 2

«

sin
`

ω´ω0
2

T
˘

ω´ω0
2

T

ff2

“ A2T 2 sinc2
”ω ´ ω0

2
T
ı

.

8



(d) Sketch the power spectrum under the assumption that T " 1{ν0 " pω0{2πq
´1. When you make

your figure, do it as detailed as possible. At the very least, focus on the value and shape near the
resonance ω “ ω0. To get the peak amplitude, it will help to use techniques similar to those in
Problem 2. After that, find the first zeros of the spectrum. Label what you need to.

Answer: Near resonance ω « ω0, we can Taylor expand the cosine function around 0:

P pω « ω0q «
2A2

pω ´ ω0q2

„

1´

ˆ

1´
1

2
pω ´ ω0q

2T 2

˙

« A2T 2.

The first 0s of the power will occur then the cosine function has an argument of pω ´ ω0qT “ ˘2π, or, when
ω “ p˘2π ` ω0T q{T “ ω0 ˘ 2π{T . This is when the cosine term goes to 0, but the denominator does not
(unlike at resonance).
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