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This exam deals with some fundamental, basic mathematics that can occur frequently in astrophysics re-
search. In fact, all of these problems are loosely related to topics that have arisen in my daily research or
course preparation over the past 18 months and scribbled in my notebooks, in one form or another. These
topics cover things that aren’t always trivial to just “look up” to find the right answer. The anticipated
passing grade is 75%.

Show all work clearly and please write legibly, and if you can’t solve something completely, at least give an
idea of how you might go about it. Make sure you are careful to answer ALL parts of each question. Don’t
spend too much time in the beginning on one question, move on and try them all and then come back if you
need to. No calculators allowed please. Good luck!

Here are a few things you may need.

e Matrix multiplication.
C = AB; Cij = Zaikbk_j- (1)
k

e Taylor expansion.

1
f(@)~ f(a) + f'(a)(z —a) + S f"(@)(x —a)* + ... (2)
e Internal energy density of an ideal gas (energy per unit volume):
u= gnkBT, (3)

where the terms are particle density, Boltzmann’s constant, and temperature.
e Specific internal energy (energy per unit mass): U = u/p, where p is mass density.
o dm = 4mpridr
o P =nkgT.

e The continuity equation, which expresses mass conservation of a fluid in some given volume:
V- (pv) =0, (4)

where p is mass density and v is the fluid velocity. pv is the mass flux.

e Divergence operator in spherical coordinates (7,6, ¢) for generic vector A = (A1, Aa, A3):

1 043

10 l 0
VA_ani( A1)+ 060(5111014.2) 7“311]9% (5)

e Curl operator in spherical coordinates (r, 8, ¢) for generic vector A = (A;, Ag, A3):
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e Discrete Fourier transform of a signal f(¢) and its inverse, where in this case w is the angular frequency:
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fw) = | fwetar, (7)
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1. (10 points).
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0
0
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(a) Let A = [ 9

]ande

Answer: This is a 2x2 matrix. C =

Or,

C11
C12
C21

C22

LetA:[l 2 1]andB:[1

Answer: This should be rewritten as

1 0 -1
Itisa3x3 matrix. C=1|2 0 -2
1 0 -1

1 0

1 —1]|. Compute C = AB
2 1

-1 -1

-2 =2/

a11b11 + a12b21 + a13bz1 = —1
= a11bi2 + a12b22 + a1zbz2 = —1
= a21b11 + a22b21 + az3bzr = —2
= a21b12 + a22b22 + aszbza = —2

0 —1]. Compute C = AT B, where T is the transpose.

1
[2] 10 —1].
1
. Or,
cu = anbn =
ciz2 = anbi2=0
ci3 = anbiz = -1
co1 az1bi1 =
co2 = az1bia =
c23 = az1biz = -2
31 = asbii =1
cz2 = azbi2=0
¢33 = asibiz=-—1



2. (10 points).

(a) Find a second-order approximation to the function f(#) = cosf about the point 6 = .

Answer: From Taylor's theorem

fO) =~ cos7r—sin7r(0—7r)—100577(9—71)2 (10)
~ 104 (6 -’ (1)
~ 71+%(977r)2. (12)

(b) Now sketch cosf and your approximation from 6 = /2 to § = 37/2 as accurately as possible
(primarily the mid and end points).

Answer: The approximation works well at 7 but not at the end points. Where cosf = 0 at the end points,
our approximation is instead f(7/2,37/2) = —1 + 7%/8 > 0.
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3. (8 points). Compute the value of the definite integral

1
I =J 922 Inzd, (13)

where € is an extremely small number. Hint: integrate by parts.

Answer:
u=1Inx ; dv = 92%dz
du = ldx ; v = 32>
T

1
3z’ Inz|} fJ 32% dz
— 0—a ‘

—1.



4. (10 points). The Virial Theorem tells us that the gravitational potential energy (say, Eg) plus twice the
total internal energy (say, Ur) is zero for a star that’s an ideal gas. The Virial Theorem can be derived
conveniently from the equation of hydrostatic equilibrium. Do this by multiplying both sides of the
equation of hydrostatic equilibrium by 473 and integrating both sides from 0 to R, i.e., from the star
center to the surface. You should be able to arrive at one of the main terms on the right-hand-side of
the equation with minimal work. For the left-hand-side, integration by parts may be helpful at one
stage. If you use any simplifications or approximations, please point them out.

Answer: The Virial Theorem thus says that E; + 2Ut = 0. Following the prescription,

e _ = e
dr pPg = —p )
R R
J 47rr3£dr = ff 47rr3pG—2n dr
0 dr 0 r
u = 4mr® ; dv = gdr
dr
du = 127r? dr ; v="P
R R
47r7"3P\é?‘ —J 127Prdr = —J G—m47rp7"2 dr
0 o T
R M
P(R) —0—f 3547Tpr2 dr = - G—mdm
o P o T
M
2
—3[ “%4m = E, P(R)—0
0o 3p
M
—2f Udm = E;
0
—2Ur = <
Eg +20r = 0.
If, in the above, one did not switch to the mass coordinate on either side, and used the internal energy density
instead,
R
— J 120Pr?dr = E,
0
B2
ff 1257r%udr = E,
3
0
R
-2 J wdrr®dr = E,
0
—2 fﬂudv - B,
Eg +20r = 0.



5. (10 points). Consider a three-dimensional fluid in spherical coordinates that obeys the continuity
equation everywhere. The mass flux can then be conveniently expressed as

pv =V X 1/1&57 (14)

where v is simply a scalar function that only depends on position ¢ = ¥(r, 0, ¢). 1 is sometimes known
as a “stream function.”

(a) First, quickly show/describe/argue that if the mass flux satisfies the continuity equation, then it
is always possible to write an expression like the right-hand-side of Eq. (14). You don’t necessarily
have to compute the divergence here.

Answer: If V - pv = 0, then we can always take the divergence of the curl operator since the curl operation
returns a vector perpendicular to V, whose divergence is automatically zero.

(b) Now, using Eq. (14), find expressions for each component of the full 3-D velocity field v =
(vr,v9,v¢) in terms of the stream function .

Answer:

1

Por = e 00 (v sin 6)

1 R
= (wcose-l-sm@@)
Ldy

rdo’
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Then,
pvg =0,

since there is no component parallel to the q@ direction due to the definition of the stream function.



6. (15 points). Say you have recorded a signal from observations from ¢ = 0 to ¢t = T. The signal has
a functional form given by z(t) = Aexp(—iwot), where wy is a single, angular frequency and A is the
amplitude.

(a)

Relz(t)]
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Assuming that T'» 1/vg » (wo/27) 7!, sketch the real part of your signal as accurately as possible,
with axes labeled (v is the corresponding cyclic frequency).

Answer: This is just a cosine function that has vy of oscillations in time 7', with amplitude +A.

Now sketch the real part of the signal assuming that 7' < 1/vy < (wo/27) ™!, again, with everything
labeled.

Answer: This is a cosine function that doesn’t go through a full period since P = 1/ > T'..
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(c) Compute the power spectrum of your signal. The power spectrum is given by P(w) = |z(w)|?,
where z(w) is the (complex) Fourier transform of the signal. Show that it’s

Pw) = —22 (1~ cos (@ wo)T) (15)
w)=———-—=I[1—-cos((w—w .
(w—wp)? 0
or, equivalently,
P(w) = A*T? sinc? [“’ ;wo T] . (16)
Answer:
T . .
z(w) = AJ e wolelwt g
0
T
_ Af ei(w—wo)tdt
0
ei(wfwg)t T
h Ai(wfwo) 0
_ _ iA i(w—wo)T _
- w — Wo |:e 1i|
* _ iA —i(w—wo)T __
zt(w) = w—wo[e 1].
So then

Plw) = |z =2"(w)z(w)
2A?

m [1 — COS (((IJ — UJO)T)] .
Alternatively, one may have factored out an exponential in a preceding step to arrive at a different Fourier
transform:

z(w) = __4 [e“wi%ﬂ“ - 1]

w — Wo
iA e%(w*WO)T [e%(w*WO)T _ efé(wfwo)T]
w — Wo

24 e (Wmwo)T i (L — %o T)
w — wo 2

¥ (w) = 24 e_%(w_WO)Tsin(iw_on)
w — wWo 2

Then
Pw) = |z’ =z*(w)(w)

4A2 .2 (W—Wo
B (w—wo)QSHl( 2 T)

2

_ gepe|sin (95 T)
w—2w0 T

=  A’T?%sinc® [w —2w0 T] .
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Power

(d) Sketch the power spectrum under the assumption that T' » 1/vg » (wo/27)~'. When you make
your figure, do it as detailed as possible. At the very least, focus on the value and shape near the

resonance w = wy. 1o get the peak amplitude, it will help to use techniques similar to those in
Problem 2. After that, find the first zeros of the spectrum. Label what you need to.
Answer:

Near resonance w & wp, we can Taylor expand the cosine function around O:

247
Plw~wy) =~

(w—wo

1= (gm0
AT,

The first Os of the power will occur then the cosine function has an argument of (w — wo)T = +2, or, when
(unlike at resonance).

w = (27 + woT)/T = wo £ 2w/T. This is when the cosine term goes to 0, but the denominator does not

\x -~
! S ~
Wo- 2m wot 2,




