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Abstract

A Neptune-sized exomoon candidate was recently announced by Teachey & Kipping, orbiting a 287 day gas giant
in the Kepler-1625 system. However, the system is poorly characterized and needs more observations to be
confirmed, with the next potential transit in 2019 May. In this Letter, we aid observational follow up by analyzing
the transit signature of exomoons. We derive a simple analytic equation for the transit probability and use it to
demonstrate how exomoons may frequently avoid transit if their orbit is larger than the stellar radius and
sufficiently misaligned. The nominal orbit for the moon in Kepler-1625 has both of these characteristics, and we
calculate that it may only transit ~40% of the time. This means that ~zsix non-transits would be required to rule out
the moon’s existence at 95% confidence. When an exomoon’s impact parameter is displaced off the star, the
planet’s impact parameter is displaced the other way, so larger planet transit durations are typically positively
correlated with missed exomoon transits. On the other hand, strong correlations do not exist between missed
exomoon transits and transit timing variations of the planet. We also show that nodal precession does not change
an exomoon’s transit probability and that it can break a prograde-retrograde degeneracy.
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1. Introduction

In the solar system our understanding of the planets is
enriched by our understanding of their moons. The Moon is
thought to influence Earth’s habitability (Laskar et al. 1993).
The Galilean moons help constrain the early evolution of
Jupiter (Heller et al. 2015; Ronnet et al. 2018). The equatorial
alignment of Uranus’s moons helps us understand the origin of
the planet’s tilt (Kegerreis et al. 2018). As a community we
would benefit immensely from conducting similar science for
moons of extrasolar planets (exomoons).

Detecting analogs of the solar system moons is challenging
due to their small size. Photometry is thought to be the most
promising technique (Kipping et al. 2009), either through
observing individual moon transits (Sartoretti & Schneider
1999), multiple averaged moon transits (Simon et al. 2012;
Heller 2014; Teachey et al. 2017), or inferring the moon’s
existence based on the planet’s transit timing variations (TTVs)
and transit duration variations (TDVs; Sartoretti & Schnei-
der 1999; Kipping 2009a, 2009b, 2011; Heller et al. 2016).
Other techniques with potential include gravitational micro-
lensing (Bennett et al. 2014; Hwang et al. 2018) and
observations of self-luminous giant exoplanets to detect a
variation in polarization (Sengupta & Marley 2016) or in radial
velocity (Vanderburg et al. 2018).

The most plausible exomoon to date is in the Kepler-1625
system. The planet (Kepler-1625b) itself is unremarkable: a gas
giant on a 287 day orbit. The surprise, however, is the size of
the moon (Kepler-1625b-i), as it is potentially similar in mass
and radius to Neptune. Such a large moon is without precedent
in our solar system, but one must remember that so were the
first exoplanet discoveries.

The moon was originally suspected based on three planet
transits within the original Kepler mission (Teachey et al. 2017;
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Heller 2018). Asymmetries in the transit profile teased the
presence of a moon, but neither TTVs nor TDVs were detected
to confirm it. The moon’s existence became more likely after a
fourth planetary transit was captured by the Hubble Space
Telescope (HST; Teachey & Kipping 2018). The planet transit
was 70 minutes early, although no TDV was detected.
Furthermore, there is a shallow dip in the light curve after
the egress of the planet transit: a potential moon transit. Table 1
contains basic system parameters used in our Letter, but we
refer the reader to Teachey & Kipping (2018) for significantly
more detail.

In this Letter we are agnostic about the reality of this
particular exomoon. Both Teachey & Kipping (2018) and
subsequent analysis by Heller et al. (2019) encourage new
observations in order to consider the moon confirmed. In this
Letter we aid such future observations by analyzing the
detectability of exomoons, both in general and for Kepler-
1625b-i specifically. We quantify previous intuition that some
moons are not guaranteed to transit every time their host planet
does (Sartoretti & Schneider 1999; Martin 2017). Missed
transits typically occur when the moon’s orbit is both wider
than the stellar diameter and significantly misaligned to the
planet’s orbital plane. The best-fitting, albeit loosely con-
strained orbit for Kepler-1625b-i has both of these character-
istics. Furthermore, within our own solar system we know of
Triton, which is on a highly misaligned, in fact retrograde, orbit
(Figure 1).

In this Letter we derive an analytic transit probability for
exomoons of transiting planets (Section 2), which accounts for
both misalignment and a dynamically varying exomoon orbit.
We then test the correlation between the presence/absence of
moon transits and the TTV and TDV signature of the planet
(Section 3). We apply our work to both exomoons in general
and the Kepler-1625 system specifically (Section 4). The Letter
ends with a brief discussion (Section 5).
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Table 1
Parameters of the Kepler-1625 Exomoon Candidate System
Param. Unit Value 1o Min lo Max Note
Host Star
m, M) 1.04 0.98 1.12
R, (Re) 1.73 1.51 1.97
Planet
mp (Myup) 6.85 1.2 12.5 (a)
Rp (Ryup) 1.04 0.90 1.18
T (days) 287.37278 287.37213 287.37353
ap (au) 0.87 0.85 0.89 (b)
bp 0.104 0.038 0.188
Iv (deg) 89.94 89.88 89.98 (c)
Qp (deg) 0 0 0 ©
Moon
Ny (M) 36.2 44 68 (a)
Rum (R=) 4.90 4.18 5.69
Tm (days) 22 13 39
am (au) 0.022 0.017 0.030 (d)
Iv (deg) 42 24 57 (e)
Om (deg) 0 —83 142 (e)
Relative Orbit
[90 — Iv| (deg) 48 33 66 6

Note. Parameter key: m: mass, R: radius, T: period, a: semimajor axis, b:
impact parameter, I: inclination, 2: longitude of the ascending node. (a) No
nominal value is given for the planet or moon mass, only upper and lower
bounds, so the value that we provide here is simply an average. (b) Teachey &
Kipping (2018) gave ap = 0.987)1% au, but this is inconsistent with their
values for Tp = 287 days and M, = 0.9873:98 M., so we recalculate ap and our
value matches Heller (2018). (c) Ip is not given by Teachey & Kipping (2018);
calculated from our value of ap and the given values of bp. 2p = 0° arbitrarily
because transits are not sensitive to both Qp and 2y individually, only AQ.
(d) Not given by Teachey & Kipping (2018); calculated from their values of
ay/Rp = 45:.%0. (e) We take Iy and 2y to be calculated with respect to the
observer, although we note that €2y is essentially unconstrained by the data,
with a 225° 1o confidence interval. The inclination value is also modulo 90°,
i.e., a degeneracy exists. (f) Equivalent to Al from Equation (2) with Qy = 0°
and /p = 90°. We use this as the moon’s mutual inclination because Teachey &
Kipping (2018) did not give a value and 2y is so poorly constrained.

2. Exomoon Transit Probability
2.1. Transit Geometry

The transit geometry is shown in Figure 2. The observer
looks from the positive z-axis at the (x, y) sky plane centered on
the star. The planet orbit is modeled by a straight line from left
to right (positive x direction), vertically offset by the impact
parameter bp = apcoslp/R,. This assumes ap > R*3 and
mp > mM,4 and throughout this Letter we also assume circular
orbits, i.e., ep = ey = 0. The planet’s orbit would be rotated
clockwise by Qp, but we arbitrarily set Q2p = 0 as the transit
geometry are only sensitive to AQ = Qy — Qp.

The position of the moon at the time of the planet’s transit
midpoint across the star is fundamental to the transit

3 Very tight-orbiting planets are thought unlikely to host moons anyway

(Namouni 2010).

Care must be taken when generalizing our work to “binary planets” (Lewis
et al. 2015), although our work is likely applicable to “moon-moons”
(Forgan 2018), “moon—-moon-moons,” or indeed moon”.
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phenomenon. Neglecting eccentricity, its projected orbit is an
ellipse with major axis ay and a minor axis ay| cos ly|, rotated
counter-clockwise by 2y and offset vertically by bpR,:

[XM(fM)]

ym(fm)

_ [ am(cos ncos fy; — cos hysin (O sinfy,) ] 0
am(sin Qv cosfy, + cosly cos Qysinfy) + bR, [

where fy; is the true anomaly of the moon. It is important to
remember that fy; is the orbital phase of the moon defined
within its orbital plane, not with respect to our (x, y) coordinate
system. In Figure 2 the moon is misaligned and prograde with
the planet’s orbit and projects a counter-clockwise motion. In
Figure 6 we however note that a degeneracy exists between
prograde and retrograde moons (see Section 5.1). The mutual
inclination between the moon and the planet’s orbit (not
equator) is

cos AI = cos AQsin Iy sinlp + cos Iy cos Ip. )

The moon will transit the star on a given planet transit when
[ym(A)] < R,.. To make this criterion easier to solve, we
consolidate the expression in Equation (1) for yy; from two
trigonometric functions of fj; to one:

ymU) = ayysin? Qy + cos? Iy cos? Oy

X COS (fM — arctan [M]] + bR,

tan Oy

~ ap]| sin Al| cos [fM — arctan [M]] + bR,,
tan QM

3)

We note that while the second line of Equation (3) contains
bp, hence implying that Ip is not exactly 90°, the approxi-

mation \/ sin? Oy + cos? Iy cos? Q= |sin Al is derived
from Equation (2) using Ip = 90°. However, the end result is
a negligible difference between the two lines in Equation (3).

The exomoon transit probability is calculated as the fraction
of angles fy that correspond to |yy| < R,. The phase shift of
arctan[cos Iy / tan 2] in Equation (3) does not affect this
fraction, and hence we simplify Equation (3) by defining
fl\’/l = fy — arctan[cos IM/tan Qm]. The function yM(fl\//[) is
symmetric over fy; = 180°. Between 0 and 180° we define the
range of transits to be [A, B], where

0 if bpR, + ay|sin All < R,
- arccos[M] if bpR, + ay]sin AIl > R, (can miss above star),
am sin Al
4)
and
180° if bpR, — ay|sinAll > —R,
- arccos[%] if bpR, — ay|sin All < —R, (can miss below star).

&)

If fl\/,l (and hence yy,) is static during the planet’s transit then
the exomoon transit probability is simply the ratio
pm = (B—A)/180°. However, this static assumption is only
applicable when Ty > 7p, where 7p is the planet’s transit
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Kepler 1625b-i Kepler 1625b-i
(retrograde) (prograde)
A \

Galilean moons

Planet orbital plane

Host star

Figure 1. Left: orbits of the seven most massive solar system moons (red) and the exomoon candidate Kepler-1625b-i (the shaded blue region denotes the 1o ay error
bars) compared with the host star disk, ignoring eccentricity. Right: mutual inclination (Al) measured counter-clockwise from the planet orbital plane (black dashed
horizontal line) to the moon orbital plane. The massive solar system moons are shown as individual red lines, although most closely overlap. For Kepler-1625 we estimate
Al =~ 90° — Iy from Equation (2) with AQ = 0 and Ip = 90°. For the error in Al we take the given 1o errors for Iy;. A blue shaded region shows the 1o confidence
interval and is mirrored for retrograde. Note that Titan is actually almost coplanar to its host Saturn’s equator, but the planet is tilted by Al = 27° from its orbital plane.

duration:

T . [R1 =07
P = P arcsin| ——F , (6)
ﬂ' ap
To approximately account for shorter-period moons we add to
pwm the fraction of the orbit covered during the planet’s transit:

7p/Typ. With this, our derived exomoon transit probability is

Pyt = min[B L 1]. @)

180° Tv

2.2. Orbital Dynamics

The orbit of an exomoon may be subject to various
dynamical perturbations. When the moon and planet orbits
are misaligned, one such effect is a nodal precession induced
by the three-body interactions between the Sun, planet, and
moon. From Mardling (2010) the rate of precession is

T — i mp + m, T_}g 1
pree Ty cos AT
This effect may be quenched by a competing torque on the
moon’s orbit induced by the equatorial bulge of the planet.
Burns (1986) calculated a critical moon semimajor axis, for
which the dynamics of interior orbits are dominated by the
planet’s equatorial bulge:

2hR2agm 13
AM,crit = [%) , 9)

®)

3 m,

where J; is the first gravitational harmonic. See also Boué &
Laskar (2006) and Tremaine et al. (2009) for more details. In
this Letter we are predominantly interested in moons that are
long-period and misaligned (such that moon transits are
sometimes missed) and planets that are short-period (so planet

transits are more frequent). For such moons the dominant effect
is a three-body nodal precession. The Earth’s moon exhibits
three-body nodal precession with a period of 17.9 yr (according
to Equation (8)). For Kepler-1625 apy iy = 0.008 au, which is
almost three times less than the nominal value ay; = 0.022 au,
and hence we also expect three-body nodal precession in this
system, with a calculated period of 20.5 yr.

With respect to the orbital plane of the planet, which remains
(essentially) fixed, nodal precession makes the moon orbit
circulate at a constant rate given by Equation (8), while
maintaining a constant mutual inclination Al. With respect to
the observer, Martin (2017) showed that Iy librates over time ¢
around the constant /p according to

prec

Iv(t) = Al cos [z—ﬂ(t — to)] + Ip, (10)

where fy, corresponds to Ip;o. With respect to the observer,
Om(®) also librates and can be calculated by combining
Equations (2) and (10).

A complication to the nodal precession arises in highly
misaligned orbits, such that [90° — AI| < 50°. In such cases
Kozai-Lidov cycles occur, which cause Al and ey vary, even
for initially circular orbits (Lidov 1961, 1962; Kozai 1962).

The expression for yy; in Equation (3) does depend on the time-
dependent quantities Iy; and €);. However, these quantities only
phase shift i and do not change the fractional range of fy; corres-
ponding to transits, which is why they could be ignored when
calculating the quantities A (Equation (4)) and B (Equation (5)).
These quantities are functions of A, but this is constant’ for

5 To be precise, Al is only constant under the secular regime, i.e., when

calculations are made that average over the orbital periods. There do exist
short-term variations on the timescales of Ty; and Tp, but these are on order
~2% variations.
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Moon

Moon transit region

Figure 2. Observer’s view of a transiting exoplanet (blue), its host star (yellow), and exomoon (red). Moons within the gray region will transit the star. Dotted regions
of the moon and planet orbits show where those orbits pass behind the projected orbit of the other body.

orbits that are circular and without Kozai-Lidov cycles.
Overall, we demonstrate that in our simplified setup the
exomoon transit probability py; is constant during the moon’s
precession period.

2.3. Accuracy of the Analytic Solution

We run n-body simulations for a suite of 1000 randomized
transiting planet plus moon systems and calculate a numerical
transit probability as the ratio of moon to planet transits. The
masses are m, = 1M, mp € [0.1, 3]Mjp, my € [0.1, 17]M,,
using log-uniform distributions. The planet radii are
calculated using the mass—radius relation of Bashi et al.
(2017): R/Rs = (m/My)°> for m/My < 124 and R/R, =
(m/Mz)*0" for m/M, > 124. The orbital parameters for the
planet are Tp € [200, 500] days, ep = 0, Qp = 0, bp € [0, 0.9],
and fp € [0°, 360°]. The orbital parameters for the moon are
Twm € [1, 50] days, ey =0, fy € [0°, 360°]. The mutual
inclination is drawn from AT € [0°, 40°]. We randomly choose
the starting phase of the precession period by calculating Iy in
Equation (10) with a uniformly random phase between € [0°,
360°] and Ip calculated from the randomly chosen bp. We then
calculate 2y from Equation (2).

Each simulation is run over a time span of 100 x 7p using a
fourth-order Runge—Kutta integrator with a fixed step size of
30 minutes, chosen to match Kepler’s long-cadence observa-
tions. Across all 1000 simulations, the median percentage error
between the analytic and numerical transit probabilities is
1.2%. For 626 of the simulations the numerical transit
probability is less than 1 (i.e., at least one missed moon

transit), and for these simulations the median error is 4.0%.
Contributions to the error include perturbations to the moon’s
orbit, mean motion resonances, other period-ratio effects that
may alias the moon transit sequence, any simplifications in the
derivation of Equation (7), and counting statistics of the
numerically calculated transit probability.

3. Planet Transit Timing and Duration Variations

An isolated, unperturbed planet would transit the star with
perfect periodicity, Tp. However, the presence of the moon can
induce TTVs and TDVs on the planet. The main cause is a
small “wobble” of the planet around the planet-moon
barycenter, on top of the planet’s larger-scale orbit around
the star—planet barycenter. This is a Keplerian effect (i.e., it
occurs with static orbits). We briefly discuss the origin of the
barycentric TTVs and TDVs in Section 3.1, and direct the
reader to the seminal papers of Kipping (2009a, 2009b) for a
much more thorough treatment, included detailed analytic
equations. A secondary contribution to TTVs and TDVs is
from non-Keplerian effects, i.e., perturbations to the orbital
elements. We do not discuss these effects but they are naturally
included in our n-body simulations. Finally, we do not discuss
the TTVs and TDVs of the moon itself, but they are expected to
significantly larger than those of the planet.

3.1. Origins of Barycentric TTVs and TDVs

A planet exhibits a TTV when slightly offset along the
horizontal axis (i.e., parallel with its transit chord). This change
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Figure 3. Left: normalized histograms of TTVs and TDVs, scaled by the maximum amplitude in each simulation and separated to when the moon does transit (moon
transits ON, red) and does not transit (moon transits OFF, blue). The TTVs and TDVs are calculated in the n-body simulations presented in Section 2.3, only taking the
626/1000 simulations with at least one missed moon transit. Right: same TDV results but separated into small (top), moderate (middle), and high (bottom) planet

impact parameters.

adds or subtracts to the time taken to reach the transit midpoint.
A horizontal offset is induced by the planet’s wobble around
the planet—-moon barycenter. The TTV is calculated as the time
taken for the planet to traverse this offset at its orbital velocity
around the star of vp, = 27map/Tp.

A planet exhibits a TDV for two different reasons. First, the
planet’s motion around the planet-moon barycenter has a
velocity vpy = 2mangny/[(mp + my)Tnv).  The  horizontal
component of this velocity may be additive or subtractive to
vp, and hence when the planet transits it may be moving a
little faster or slower than average, causing the transit duration
to vary. Kipping (2009b) called this the “V-TDV.”

The second cause of a TDV is a vertical offset of the planet’s
position (i.e., perpendicular to its transit chord) due to the
barycentric reflex motion induced by the moon. This changes
bp, hence changing 7p by Equation (6). Kipping (2009b) called
this the “TIP-TDV.”

3.2. Connecting TTVs and TDVs with Moon Transit
Occurrence

We use the Section 2.3 n-body simulations to test the
correlation between moon transits and planet TTVs and TDVs.
We only take the 626/1000 simulations that have at least one
missed moon transit. For each simulation we calculate
numerically the TTVs and TDVs, which we scale by dividing

each value by the maximum absolute value for the simulation.
We collate the scaled TTVs and TDVs for the simulations,
separate them by moon transit occurrence, and show the results
in a histogram in Figure 3 (left).

For TTVs there is typically no difference between when the
moon does and does not transit. There are two main reasons for
this. First, occurrence of a moon transit is a function of its
vertical position (ypy), yet the TTV signal is a function of the
moon’s horizontal position (xyy). Consider Figure 2. A positive
xy displaces the planet to the left and hence induces a positive
TTV (late transit), and vice-versa. We see that positive xy
values correspond to both cases where the moon does and does
not transit (only misses above the star). Negative x\; values
largely correspond to the moon transiting, but there is also a
small parameter space for missing transits, both above and
below the star. In Figure 2, when averaged over all xy; there
will be preference for missed transits to correspond to positive
values of xy;, and hence positive TTVs. However, this trend
will be weak except for small ay;/R,, and in that case it would
be rare for the moon to avoid transit anyway. The second
consideration is that nodal precession of the moon rotates its
orbit. After 0.57),.. the moon orbit in Figure 2 will be mirrored
horizontally, in which case missed moon transits will now
typically correspond to negative values of xy. Our n-body
simulations cover multiple precession periods, and hence any
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Figure 4. TTVs (left) and TDVs (right) for a 5M, 2R, moon with Ty = 20 days (ay = 3.05R:) around a 1My, 1Ry, planet with 7p = 1 yr orbit around a 1M,
1R, star, with misalignment of Al = 30° and planet impact parameters 0.1 (a), 0.4 (b), and 0.7 (c). All simulations start with Qy; = 0°, fp = 0°, and f,y = 50°. Red

indicates that moon transits occur, while blue indicates that they did not.

small short-term TTV-moon transit correlations are aver-
aged out.

For TDVs the results contrastingly show a clear difference in
the TDV distribution with and without moon transits. This
matches Figure 2; the moon misses transit when in the
uppermost and lowermost parts of its orbit, but the upper region
is larger due to the asymmetric vertical offset. When the moon
is in this upper region the planet is displaced slightly downward
toward the stellar center, and hence takes longer to transit (a
positive TDV). This does not change throughout the nodal
precession period.

The TDV-transit correlation is only prominent when bp is
significantly non-zero. In Figure 3 (right) we split the
simulations into bp € [0, 0.3], [0.3, 0.6], and [0.6, 0.9]. The

correlation between TDVs and moon transits disappears for
small impact parameters. There are two reasons for this. First,
for the same vertical offset induced by the moon the change in
the path length across the star is less when the planet passes
near the stellar center rather than near the limb. Second, at
small bp the moon’s orbit across the star is nearly symmetric
vertically, and hence is nearly equally likely to miss transit
above or below the star (unlike in Figure 2).

The TDVs for small bp are largely caused by the velocity
change effect, which is dependent on the horizontal position of
the moon and hence is not strongly correlated with the presence
of moon transits.

In Figure 4 we show TTVs and TDVs for three example
simulations. The sole change is bp = 0.1, 0.4, and 0.7. The
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Figure 5. (a) py as a function of the planet’s impact parameter bp, and the mutual inclination, A/, for R, = 1R, and four different values of ay;. (b) py of Kepler-
1625b-i using the nominal parameters from Teachey & Kipping (2018), where we scan across Al and ay;. The gray diamond is the best-fitting value and the dashed
boxes are 1o error bounds. Note that the transit probability is symmetric between prograde and retrograde orbits, and indeed A/ could be just as likely 132° as its noted
value here of 48°. Note that in (b) for Al between 40 and 70° there will be Kozai-Lidov cycles, which would affect the true py; in the long term but are not accounted

for in our equations.

planet TTV signal remains constant, although the sequence of
moon transits changes. The TDV signal at small bp is small in
amplitude with no correlation with the moon transits. As bp
increases, so does the TDV amplitude and the moon transit
correlation.

The impact parameter of the planet Kepler-1625b is well
constrained to be small: bp = 0.10470:05¢ We therefore expect
TDVs to be small and uncorrelated with missed moon transits,

and indeed no TDVs have been observed so far.

4. Applications
4.1. Transit Probability of Hypothetical Exomoon Systems

The transit probability for the moon is a function of Al bp,
and ay/R,. Figure 5(a) shows py (Equation (7)) over a wide
range of parameters: Al € [0, 40°], bp € [0, 1], and ap/R, =
0.5, 1, 1.56, 4.

For ay/R,. < 1.56 the transit probability is 1 except for high
values of Al and/or bp, where the probability goes to a
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Observer view

Figure 6. Exoplanet orbit (blue) with two different exomoon orbits: the red solid line is prograde and coplanar to the planet, and the black dashed line is retrograde and
misaligned to the planet. As seen by the observer (right) there is a degeneracy, as both moons has the same (x, y) position and (v,, y,) velocity, despite the side view
(left) betraying a clear difference between the two orbits. L denotes the angular momentum vectors.

minimum of 0.5. The parameter space where py; < 1 increases
as ay/R, increases. When ay/R, > 1.56 the moon’s orbit is
so wide that its vertical extent exceeds the stellar diameter and
pm < 0.5 for some Al and bp.

4.2. Transit Probability of Kepler-1625b-i

In Figure 5(b) we calculate py; for Kepler-1625b-i over a
plausible range of ap; and Al, while fixing bp = 0.1 and
R, = 1R.. Note that when calculating the nominal value of A/
we take Oy = 0° and then Al ~ 90° — I from Equation (2).
This means Al = 48°, which places the system just within the
nominal Kozai-Lidov regime, but the Al and ey variations
should be small enough for our equations to remain applicable.

The Teachey & Kipping (2018) nominal values correspond
to pm = 0.4, although this probability varies significantly
within the 1o error bounds, and they note that the moon could
still have a coplanar orbit, which would mean py; = 1.

5. Discussion
5.1. Breaking the Prograde/Retrograde Degeneracy

Observations of a moon that orbits a planet on a non-
evolving orbit are subject to a degeneracy between prograde
(AI<90°) and retrograde (AI >90°) orbits. This degeneracy
is shown in Figure 6. Two orbits are shown: one in solid
red that is prograde and coplanar (Al = 0°, red solid line), and
one in dashed black that is retrograde but misaligned
(90° < AI < 180°). Both orbits yield the same projected x
and y positions and v, and v, velocities of the moon; hence, the
Keplerian TTV and TDV phenomenology would be the same.
However, the side view (left) reveals a clear difference in the
two moon orientations.

This degeneracy may be broken by nodal precession, which
would not occur for the coplanar orbit but would for the
misaligned orbit. Fortunately, for a moon that orbits at a fair
fraction of its planet’s Hill sphere, precession will be rapid,
revealing the magnitude of the misalignment in just tens of
orbits of the planet. Therefore, the dynamically evolving
character of TDV will betray the prograde or retrograde
character of the moon.

If the planetary impact parameter is low then the “TIP—
TDV” may be negligible and the magnitude of non-coplanarity
may not be enough to break the degeneracy. In this case,
higher-order dynamical effects that differ in sign between
prograde and retrograde moons may need to be taken into

account, as envisioned by Lewis & Fujii (2014). Two
alternative methods for breaking the degeneracy, practical only
with Extremely Large Telescopes, were discussed by Heller &
Albrecht (2014).

5.2. The Prevalence of Large TTVs for Long-period Gas Giants

According to the transit times of Table S3 of Teachey &
Kipping (2018), the planet Kepler-1625b has a mean absolute
deviation from a constant-period model, normalized by the
orbital period—a “scatter”—of so_c/Tp = 2.40 x 10~°. The
timings have a median error bar normalized by the orbital
period of ¢/Tp = 1.55 x 107>, For the TTV measurements of
Holczer et al. (2016), the data are more precise than that for 40
planets with 7p > 100 days. Of those 40, 15 planets have
larger TTV scatter, i.e., so_c/Tp > 2.40 X 1075, and all of
these are deemed significant at logp < —8.8. The large
amplitude and period of these signals makes them likely due
to planet—planet perturbations. We conclude that Kepler-1625b
may very likely have a TTV signal due to additional planets,
which may be confused for exomoons, or at least contaminate
the exomoon TTV signal. A repeated photometric transit signal
of the exomoon, rather than the TTV induced on the planet, is
likely a more reliable signature.

5.3. Overlapping Moon and Planet Transits

There are two possible scenarios for overlapping moon and
planet transits. First, the moon may be entirely in front of or
behind the planet, in which case the photometric signal would
be identical to that of an isolated planet transit and the moon
would be hidden. Such an event is not explicitly considered in
our equations. We estimate it to be rare though, with a
likelihood on the order of ~Rp/ay if Iy = Ip = 90°, and
significantly less for inclinations that allow the moon to be
offset vertically from the planet at transit. Second, the moon
and planet may pass the star at the same time, but with different
impact parameters. In this case their photometric dips would be
additive and, if telescope precision allowed, a distortion in the
transit shape may be detected. Such an event would be covered
in our equations for py;. Exotic syzygies such as this are treated
in more detail in Kipping (2011), Veras & Breedt (2017), and
Veras (2019).
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5.4. Future Observing Prospects

The most effective way to confirm and characterize the
Kepler-1625 system is through continued transit photometry.
Even if the moon only transits ~40% of the time as we predict,
additional planet transits will provide new TTV measurements,
although probably not new TDV measurements due to the
planet’s small impact parameter. The next planet transit is
scheduled for 2019 May 26. Figure S18 of Teachey & Kipping
(2018) predicts when the moon will transit. Most of their
models show a moon transit before the planet’s ingress, but
they do not quantify the chance of the moon missing transit.’

The Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2014) can feasibly observe the planet transit on 2022 July
19 and 2026 June 25, but at Jmag=14.4 the transit will only be
observed at a signal-to-noise ratio of 2.5, which is insufficient
for transit timing or moon spotting.

The James Webb Space Telescope (JWST) will provide
superior photometric precision to HST (Beichman et al. 2014).
From its observing constraints, JWST can observe Kepler-1625
annually from April 22 to November 14, meaning the first
planet transits observable with this facility will occur on 2021
October 5, 2022 July 19, and 2023 May 3. With JWST, the
transit timing will likely be limited by our abilities to model the
granulation features on the stellar surface, which induce
significant correlated noise on =20 minute timescales given
the subgiant nature of this star. Transits of a moon signal of the
amplitude and duration claimed by Teachey & Kipping (2018)
will be detectable at the 30 level.

If the moon does not exist, then a binomial test reveals how
many non-transits are required to prove this to a certain
significance. This assumes that each moon transit would have
been detectable and that the transit probability of individual
moon transits is independent for each planet transit, which
neglects mean motion resonances. The probability of =
undetected transits is p, = (1 — py)". With our estimated
pm = 04, for a 95%-confident non-detection we solve
(1 —-095 =1 —04)" to obtain n ~ 6 well-surveyed yet
undetected exomoon transits. If the moon does exist, then a
similar number of transits would be also be needed to well
characterize its orbit.

The authors are very grateful for the comments of an
anonymous referee, which were used to improve this letter.

6 At the American Astronomical Society Meeting 233, Seattle, 2019 January,
Alex Teachey’s presentation noted a simulated moon transit chance of 53% for
2019 May. This is slightly above our 40% analytic calculation, but our
calculations are an average over all transit epochs, not any specific one.
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Cume #434
Jason Jackiewicz
April 27, 2019

This semester in an astroph discussion, we heard about a potential detection of an exomoon around an exoplanet.
We also heard a lot of exoplanet talks. The paper associated with this exam discusses the likelihood of such
exomoon detections given a set of orbital parameters.

“Transits of inclined exomoons ... 7 Martin et al. 2019.

On your first read of the paper, try to become familiar with what all the variables mean, as in Table 1 and
Figure 2.

The anticipated passing grade is 75%, or 52 out of 70 total points.

Show all work clearly and please write legibly, and if you can’t solve something completely, at least give an idea
of how you might go about it. Make sure you are careful to answer ALL parts of each question. Don’t spend
too much time in the beginning on one question, move on and try them all and then come back if you need to.
DO NOT use your calculators for any formulae or constants, only to calculate. Only write on the front of each
piece of paper, please. Take your time, think clearly, read each sentence carefully, ask for clarification, and best
of luck to youl!

Some numbers you may need:

1AU = 1.496 x 10¥ cm
My = 1.99x10%g
Ry = 6.96 x 10" cm
Mg = 597x10%¥g
Re = 6.37x10%cm
Ry = 6.99 x 10°cm
Ruoon = 1.74x10%cm
Duoong = 3.84x 10" cm

Dinoon,o is the average distance from center to center of the 2 objects.

For all that follows, assume a true circular orbit of the planet around the star and the moon around the planet,
as the paper does.

1. (20 points). Below are a few short questions based on the article. Be sure to emphasize important scientific
points of the text when appropriate.

(a) In 3 to 5 sentences, describe 3 goals of the paper regarding the main motivation of this work and what
the authors set out to accomplish.

(b) In 3 to 5 sentences, describe what you think are 3 of the most important conclusions of the research
reported in the paper.

(¢) What is the main point of Section 2.37 Describe what is being done and the results of this exercise.

(d) Similarly, what are the main findings of Section 3.27

2. (8 points). Hill Sphere radius (ignoring eccentricity):

m 1/3
RH = < P > ap.
3m,

(a) What is a Hill Sphere? Describe the basic idea and then in the context of our Earth-Sun-Moon system.

(b) Using your definition and the equation, coupled with what you know about some basic insights gained
from the population of exoplanets discovered so far, argue why tight-orbiting planets might not host
moons (as mentioned in footnote 3). Be specific in your argument.
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Figure 1: Mass-radius relation of characterized exoplanets from Bashi et al. (2017). The circles represent observations while
the shaded area represents the results from planet formation and population synthesis models. The straight, solid lines are the
scaling relations mentioned in the text of the paper, and the dashed lines denote the breakpoint between the two relations.

3. (5 points). See Figure 1 of this exam, which is taken from a reference in Section 2.3 of the current paper
regarding the mass-radius relationship of exoplanets. What is this relation telling us, and then answer
why you think there is such a severe turning point in the mass-radius relation? Another way to think
about the question, is what might be some of the main differences in the details of the models (shaded
regions) for the lower-mass planets and the higher-mass planets?

4. (5 points). Use Equation (8) in the paper with proper values of the quantities to verify that “...the
Earth’s moon exhibits three-body nodel precession with a period of 17.9 yr.”

5. (5 points). The impact parameter is the sky-projected distance between the center of the star’s disk and
the center of the planet’s disc at conjunction (in units of the stellar radius). It varies from b = 0 for a
transit at the star’s center and b = 1 for a transit at the very limb of the star. Show that the planet’s
impact parameter bp is indeed given by bp R, = ap cos Ip. It might be helpful to consider a side view of
Figure 2, in the y — z plane. Provide a sketch of what you’re doing.

6. (15 points). Derive Equation (6) in the paper for the planet transit time. Show sketches if needed. Do
this in 2 steps:

(a) First, show that the projected length ¢ that the planet must travel to fully complete the transit (along
any chord) is

¢ =2v/(R, + Rp)? — (bpR..)2. (1)

(b) Now, use this to derive a final equation for 7p. It might help to visualize what’s happening looking
into the  — z plane. Assume that R? > R%.

7. (12 points). Eclipses occur in our sky too. Derive a reasonable estimate for the length (in minutes) of an
average total solar eclipse if you were on Earth’s equator for our Moon-Sun-Earth system. You basically
need to estimate an umbral shadow size and its speed across Earth’s surface. As another hint, assume
that the angular size of the Sun and Moon are only ezactly the same from a reference point at the center
of the Earth. Provide all calculations and drawings. Finally, point out why eclipse durations can vary in
length.
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This semester in an astroph discussion, we heard about a potential detection of an exomoon around an exoplanet.
We also heard a lot of exoplanet talks. The paper associated with this exam discusses the likelihood of such
exomoon detections given a set of orbital parameters.

“Transits of inclined exomoons ... 7 Martin et al. 2019.

On your first read of the paper, try to become familiar with what all the variables mean, as in Table 1 and
Figure 2.

The anticipated passing grade is 75%, or 52 out of 70 total points.

Show all work clearly and please write legibly, and if you can’t solve something completely, at least give an idea
of how you might go about it. Make sure you are careful to answer ALL parts of each question. Don’t spend
too much time in the beginning on one question, move on and try them all and then come back if you need to.
DO NOT use your calculators for any formulae or constants, only to calculate. Only write on the front of each
piece of paper, please. Take your time, think clearly, read each sentence carefully, ask for clarification, and best
of luck to youl!

Some numbers you may need:

1AU = 1.496 x 103 cm
My = 199 x10%¢
Ro = 6.96x10"%cm
Mg = 5.97x10%¢g
Ry = 6.37x10%cm
R;y = 6.99 x 10° cm
Rmoon = 1.74 x10%cm
Dioone = 3.84 x 10'%cm

Dyyoon. is the average distance from center to center of the 2 objects.

For all that follows, assume a true circular orbit of the planet around the star and the moon around the planet,
as the paper does.

1. (20 points). Below are a few short questions based on the article. Be sure to emphasize important scientific
points of the text when appropriate.

(a) In 3 to 5 sentences, describe 3 goals of the paper regarding the main motivation of this work and what
the authors set out to accomplish.

Answer: Study probability of Kepler-1625 moon transit. Develop analytical expressions for geometry of moon
transits. Compute theoretical transit probabilities based on orbital parameters. Connect this to how moons affect
transit-timing variations and transit-duration variations.

(b) In 3 to 5 sentences, describe what you think are 3 of the most important conclusions of the research
reported in the paper.

Answer: Found that the Kepler system is still iffy for a transit at 40%. Find ways to break prograde and retrograde
orbit degeneracy using nodal precession. JWST can really help confirm exomoons.

(¢) What is the main point of Section 2.37 Describe what is being done and the results of this exercise.



Answer: They compare true n-body simulations to their analytical expressions and find good agreement. They also
find, using their range of input parameters, missed moon transits about 60% of the time.

(d) Similarly, what are the main findings of Section 3.27

Answer: The authors are trying to determine if using TTVs or TDVs can help determine the presence of an exo-

moon (if a transit is missed). Transit-time variations do not really depend on when there is a moon transit or not.
Transit-duration variations do matter. Thus, using TTVs or TDVs to indirectly detect moons or confirm a moon
transit is different.

. (8 points). Hill Sphere radius (ignoring eccentricity):

m 1/3
RH = < P > ap.
3m

(a) What is a Hill Sphere? Describe the basic idea and then in the context of our Earth-Sun-Moon system.

Answer: It's the gravitational area of influence of an object (Earth) that is perturbed by a more massive object it
orbits (Sun). A satellite object (Moon) will be within the Hill sphere (of Earth). Earth's Hill sphere is about 0.01
AU, and the Moon orbits at about 0.0025 AU.

(b) Using your definition and the equation, coupled with what you know about some basic insights gained
from the population of exoplanets discovered so far, argue why tight-orbiting planets might not host
moons (as mentioned in footnote 3). Be specific in your argument.

Answer: Most planets are likely “born” with moons orbiting over a range of distances. Assume a normal Jupiter

hosted moons. Hot Jupiters teach us that planets migrate from where they were formed. As planets migrate (ap
decreases), their Hill sphere decreases, and they lose their gravitational power over their moon, so it gets ejected.
Another possibility is planets who are already near the star have less of a probability to capture a satellite.

. (5 points). See Figure 1 of this exam, which is taken from a reference in Section 2.3 of the current paper
regarding the mass-radius relationship of exoplanets. What is this relation telling us, and then answer
why you think there is such a severe turning point in the mass-radius relation? Another way to think
about the question, is what might be some of the main differences in the details of the models (shaded
regions) for the lower-mass planets and the higher-mass planets?

Answer: The radius of low mass planets is completely determined by their mass. They are likely rocky and metallic. For
high-mass planets there is either no relation or possibly many relations. The transition point is roughly near Saturn’s
mass, where H and He begins to dominate the composition and the equation of state. This is basically the break
between gas planets and solid planets, very similar to our solar system. H/He degeneracy can become important at
higher masses, and then the mass-radius relation is more complicated.

. (5 points). Use Equation (8) in the paper with proper values of the quantities to verify that “...the
Earth’s moon exhibits three-body nodel precession with a period of 17.9 yr.”

Answer: Disregard Earth's mass, use good values of the periods and know the Moon'’s orbit is about 5 percent inclined.
You want to use the Moon's sidereal period here.

Torec = 1 x 1 x 365° X !
preeT g 27.3 © cosbom/180

=18 yr.
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Figure 1: Mass-radius relation of characterized exoplanets from Bashi et al. (2017). The circles represent observations while
the shaded area represents the results from planet formation and population synthesis models. The straight, solid lines are the
scaling relations mentioned in the text of the paper, and the dashed lines denote the breakpoint between the two relations.

5. (5 points). The impact parameter is the sky-projected distance between the center of the star’s disk and
the center of the planet’s disc at conjunction (in units of the stellar radius). It varies from b = 0 for a
transit at the star’s center and b = 1 for a transit at the very limb of the star. Show that the planet’s
impact parameter bp is indeed given by bp R, = ap cos Ip. It might be helpful to consider a side view of
Figure 2, in the y — z plane. Provide a sketch of what you’re doing.

Answer: It should be recognized that the inclination angle (between star’s orbital axis and planet’s orbital plane) is
measured from the axis of rotation, or the y axis in the figure in the paper, not the orbital plane. That's how you get

the cos factor, rather than a sin. If unknown, this can be ascertained a few different ways, including from the value
given in the table for Ip, which is very close to 90°.

6. (15 points). Derive Equation (6) in the paper for the planet transit time. Show sketches if needed. Do
this in 2 steps:

(a) First, show that the projected length ¢ that the planet must travel to fully complete the transit (along
any chord) is

¢ =2v/(R, + Rp)? — (bpR.)2. (1)

(b) Now, use this to derive a final equation for 7p. It might help to visualize what’s happening looking
into the  — 2 plane. Assume that R? > R2.

Answer:

See Figure 2.

7. (12 points). Eclipses occur in our sky too. Derive a reasonable estimate for the length (in minutes) of an
average total solar eclipse if you were on Earth’s equator for our Moon-Sun-Earth system. You basically
need to estimate an umbral shadow size and its speed across Earth’s surface. As another hint, assume
that the angular size of the Sun and Moon are only ezactly the same from a reference point at the center



Figure 2: Sketch and derivation for question 6.

of the Earth. Provide all calculations and drawings. Finally, point out why eclipse durations can vary in
length.

Answer:

The Moon's shadow goes across the surface of Earth from west to east. Earth rotates from west to east. The shadow’s
speed to a point on Earth's surface is therefore the Moon's orbital speed minus Earth's rotational speed.

VUshadow = Uorb,M — Urot,E,
o 27TDmoon,€B 271'R€B
Porb,M Rrot,E

= 56.8kmmin~ " — 27.8 km min~*

= 29kmmin~ '~ 500ms* .

The size of the Moon's shadow is obtained from a ratio of triangles as in Figure 3.

2}%moon — Dmoon,@
T R@
_ 2Rmoon RQ}
r = - %
Dmoon,ﬂ)
~ 57.7km.

The shadow this size will move across a point on Earth's equator in a little less than 2 minutes. This is a reasonable
number.
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Figure 3: Sketch and derivation for question 7.

Times for total eclipses vary because of speed of moon changes depending where it is in its orbit and distance from
Earth, as well as the angular size of moon changing shadow size. Of course your location on Earth will slightly alter
your totality time too.





