... Cume # 362
. Jason Jackiewicz
April 16, 2011

"This exam covers material related to stellar properties obtained from pulsational characteristics. It is
partly based on the attached article, Chaplin et al., “Ensemble Asteroseismology of Solar-Type Stars
with the NASA Kepler Mission,” Science, 332, 213, (2011). Even though you possibly have not studied
much about stellar oscillations, you will be able to rely upon basic principles to work your way through
these questions. "

The expected or anticipated passing grade is 75%, or about 49 out of a total of 65 points.

Show all work clearly and legibly, and if you can’t solve something completely, at least give an idea
of how you might go about it. Make sure to answer all the sub parts of each question. DO NOT
use your calculators for any formulae or constants, only to calculate. Remember that Rg =
6.96 x 10 cm. Start-each numbered problem on‘a new piece of paper. Take your time, think clearly,
read each sentence carefully, ask for clarification, and best of luck to you!

I Qualitative questions (28 points)

1. [6 points]. What spectral types of stars are in this catalogue? Discuss some differences between
main-sequence and subgiant stars?

2. [7 points]. In the second paragraph, the authors say that main-sequence and subgiant stars are

unstable to convecticn. Talk about the convection zones of these types of stars, and describe in

.- some detail what a convective instability is. Try to also express your ideas about convection as

an equation, at least an approximate one that illustrates your explanation. What does convection
and the convection zone have to do with stellar oscillations?

3. |6 points]. In the third paragraph the cadence of Kepler photometry for solar-type stars is
discussed. Explain roughly what cadence is minimally necessary for these types of stars to study
their pulsations. Based on a cadence you supply, what would the Nyquist frequency be for that
time sampling? Explain what the Nyquist frequency tells you in this case.

4. [6 points]. What is a power spectrum of stellar oscillations (like the panels in Figure 1 of the
paper)? How would they have been computed in this paper (try to use a general formula if
- possible)? What do you start with? What does it reveal about the star?

o

[4 points]. The matrix of power spectra (Figure 1 in the article) shows a trend in frequencies.
What is this trend, and how can you connect it to what is stated in the text in various places?

II A few short calculations (37 points)
1. {15 points]. See Figure 1 of this exam. Thelarge frequency separation for acoustic modes of high
- radial degree on the Sun, Avg is equal to the inverse of twice the sound travel time between the
- stellar surface and core. :

(a) Based on the definition given above, derive a general integral expression for the large fre-
quency separation.
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Ensemble _' Asteroseismology of
Solar-Type Stars with the
'NASA Kepler Mission

W. J. Chaplin,** H. Kjeldsen,? ]. Christensen-Dalsgaard,? $. Basu,? A. Migtio,™” T. Appourchaux,®
T. R. Bedding,” Y. Elsworth, R. A. Garcia,” R. L. Gilliland,® L. Girardi,” G. Houdek,*® C, Karoff,?
S. 0. Kawaler,™ T, S. Metcalfe,'? ). Molenda-Zakowicz, > M. ). P, F. G. Monteiro,**

M. J. Thompson,™® G. A. Verner, ™% J, Ballot,"® A. Bonanno,”” 1. M. Branddo,'* A.-M. Broomhall,
H. Bruntt,® T. L. Campante,** E. Corsaro,” 0. L. Creevey, 15" G, Dogan,? L. Esch,® N. Gaj,>2°
P. Gaulme,” S. ). Hale," R. Handberg,” 5. Hekker,*?! D. Huber,® A, Jiménez,®% 5, Mathur, 12

A. Mazumdar,? B, Mosser,2* R, New,?* M. H. Pinsonneault,?® D. Pricopi,* P.-0. Quirion,?’

C. Régulo,"®? D. Salabert,’®'® A, M. Serenelli,?® V. Silva Aguirre,® 5. G. Sousa,’® D. Stello,®

I. R. Stevens,” M. D. Suran,?® K. Uytterhoeven,” T, R. White,® W. J. Borucki,”® T. M. Brown,*!

3. M. Jenkins,*® K. Kinemuchi,** J. Van Cleve, T. C, Klaus® .

In addition to its search for extrasolar. planets, the NASA Kepler mission provides exquisite data
on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler
field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar
propesties (such as mass, radius, and age) and to test theories of stellar evolution. We find that
the distribution of observed masses of these stars shows intriguing differences to predictions
from models of synthetic stellar populations in the Galaxy. .

' n understanding of stars is of central im-
portance to astrophysics. Uncertainties in

stellar physics have a direct fmpact on
fixing the ages of the oldest stellar populations
(which place tight constraints on cosmologies) as
well as on tracing the chemical evolution of gal-
axies. Stellar astrophysics also plays a crucial role
in the current endeavors to detect habitable plan-
ets around other stars (/--5). Accurate data on the
host stars are required to determine the sizes of
planets discovered by the transit method, io fix
the locations of habitable zones around the stars,
and to estimate the ages and to understand the dy-
namical histories of these stellar systems. Mea-
surements of the levels of stellar activity and their
variations over time (6) provide insights into plan-
etary habitability, the completeness of the survey
for extrasolar planets, and the surface variability
shown by our own Sun, which has very recently
been in a guiescent state that is unique in the mod-

- em satellite era (7, 8).

New insights are being made possible by as-
teroseismology, the study of stars by observations
of their natural, resonant oscillations (9, 10). Steliar
oscillations are the visible manifestations of stand-
ing waves in the stellar interiors. Main-sequence
and subgiant stars whose outer layers are unstable
to convection (solar-type stars) display solarlike
oscillations that are predominantly acoustic in
nature, excited by turbulence in the convective en-
velopes (11, 12). The dominant oscillation petiods
are minutes in length and give rise to variations in
stellar brightness at levels of typically just a few
parts per million. The frequencies of the oseil-
lations depend on the intéral stractures of the
stars, and their rich information content means

that the fundamental stellar properties (e.g., mass,
radius, and age) can be determined o levels that
are difficult to achieve by other means and that
the internal structure and dynamics can be in-
vestigated in a unique way.

Helioseismology has provided us with an ex-
tremely detailed picture of the interal structure
and dynamics of the Sun, including tests of basic
physics (13-15). Such investigations are begin-
ning to be possible for other stars. Over the past
decade, the quality of seismic observations on
other solar-type stars has been improving stead-
ily, from ground-based spectroscopy (16-78) and
the French-led CoRoT (Convection Rotation and
Planetary Transits) satellite {79, 20). Now, Kepler
is providing uliraprecise observations of varia-
tions in steltar brightness (photometry), which are
suitable for the study of solarlike oscillations
{21). During the first 7 months. of science op-
erations, more than 2000 stars were selected for
observation for | month each with a cadence
rapid enough to perform an asteroseismic survey
of the solar-type population in the Kepler field of
view. Here, we report the detection of solarlike
oscillations in 500 of those stars. Previously, this
type of oscillation had been detected in only
about 25 stars,

As is evident from the fequency spectra of
the oscillations exhibited by nine stars from the
ensemble (Fig. 1), solarlike oscillators present a
rich, nearregular pattem of peaks that are the
signatures of high-order overtones. The dominant
frequency spacing is the so-called large separa-
tion, Av, between consecutive overtones (22). The
average large separation scales approximately
with the square root of the mean density of the

star. The observed power in the oscillations is mod-
ulated in frequency by a Gaussian-like envelope.
The frequency of maximum oscillation power,
Vimax, SCales approximately as g7y '/, where
g o< MIR? is the surface gravity and T, is the
effective temperature of the star (23, 24).
Figure 2 shows afl the stars on a conventional
Hertzsprung-Russell diagram, which plots the Iu-
minosities of stars against T, The temperatures
were estimated (25) from malticolor photometry
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Fig. 1. Frequency spectra of the oscillations exhibited by nine stars from the
ensemble. Each spectrum shows a prominent Gaussian-shaped excess of power
because of the oscillations, centered on the frequency vy, (Insets) Clearer
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oscillation within each spectrum. The stars are arranged by intrinsic brightness
Hin units of sotar luminosity (L.)] and temperature, with intrinsicatly fainter
stars shomng weaker, less prominent oscillations than their mtnn:ncaily
brighter cousins. ppm, parts per million. -
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signalto-noise ratios). These ratics depend both on stellar properties (e.g, the
photometric amplitudes shown by the oscillations dnd the intrinsic stellar
hadkgrounds from convection) and the apparent brightness of the stars, The dotted
ines show predicted evolutionary tracks (33) for models of different stellar mass (0.8
te 1.5 solar masses, in steps of 0.1). The Sun is marked with a solar symbel (@),
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- of detection biss (27). The

Fig. 3. Blacklines show . 03— ,
histograms of the ohserved : ‘
distribution of masses (top} -
and radii (bottom) of the }*93
Kepler ensemble (27}, In b

red, the predicted distri-
butions from population
synthesis modeling, after
correction for;thie effects

population modeling was : ; !
performed by using the : : :
TRILEGAL code (34, 35).

Fraction

available in the Kepler Input Catalog (26). Lu-
minosities were estimated from the temperatures
and the seismically estimated radii [see below
and (27}]. We also plot Av against temperature,
and, just like the conventional diagram, this
asteroseismic version delineates different types
of stars and different evolutionary states (the vy,
version is similar). Main-sequence stars, buming

. hydrogen into helium in their cores, lie in a

diagonal swathe (from the lower right to top left)
on each diagram. Both asteroseismic parameters,
Av and vy, decrease along the main sequence
toward hotter solar-type stars, where surface grav-
ities and mean densities are lower than in cooler
stars (and huminosities are higher). After exhaus-
tion of the core hydrogen, stars eventually follow
nearly horizontal paths in the huminosity plot
toward lower temperatures as they evolve as sub-
giants, before tuming sharply upward to become
red giants (28, 29). The values of Av and v,
decrease comparatively rapidly through the sub-
giant phase. Detailed information on the physics
of the interiors of these stars i$ emerging from
analysis of Kepler data (30).

We have detected solarlike oscillations in
relatively few stars that have Av and vy, larger
than the solar values. These stars are intrinsically
fainter and less miassive than the Sun, and we see
fewer detections because the intrinsic oscillation

- amplitudes are lower than in the hotter main-

sequence and evolved subgiant stars. This de-
tection bias means that the most populous cohort
in the ensemble s that comprising subgiants. Sub-
giants have more complicated oscillation spectra
than main-sequence stars. The details of the spec-
tra depend on how, for example, various elements
are mixed both within and between different
layers inside the stars. Seismic analysis of the
Sun has already shown that merely reproducing
the luminosity and temperature of a star will not
guatantee that the intemal structure, and hence
the underlying physics, is correct. This inspired
the inclusion of additional physics, such as the
settting over time of chemical elements because

of gravity, in stellar models (/3). The Sun is a
relatively simple star compared with some of the
solar-type stars observed by Kepler.

We made use of the Av and vy, of the
ensemble together with photometric estimates of
the temperatures to estimate the masses and radii
of the stars in a way that is independent of stel-
lar evolutionary models—by using the so-called
direct-method of estimation (27 }—and then com-
pared the observed distributions with those pre-
dicted from synthetic stellar populations (Fig. 3).
The synthetic populations were calculated by mod-
eling the formation and evolution of stars in the
Kepler field of view, which lics in the Cygnus
region of the Orfon arm of our Galaxy, the Milky
Way (27). This modeling requires descriptions
of, for example, the star-formation history (in-
cluding the frequency of occurrence of stars with
various masses), the spatial density of stars in the
disc of the Milky Way, and the rate at which the
Galaxy is chemically enriched by stellar evolu-
tion (31). _

Previous population studies have been ham-
pered by not having robust mass estimates on
individual stars (31). Precise estimates of masses
of solar-type stdrs had been limited principally
to stars in eclipsing binaries (32). The Kepler
estimates add substantially to this total and in
numbers that are large enough to do statistical
population tests by using direct mass estimates,
which had not been possible before.

Whereas the distributions of stellar radii in
Fig. 3 are similar, the same cannot be said for the
mass distributions. We have quantified the sig-
nificance of the differences by using statistical
tests. Differences in radius were judged to be
marginally significant at best. In contrast, those
in mass were found to be highly significant
(>99.99%} (27). The observed distribution of
masses is wider at its peak than the modeled
distribution and is offset toward slightly lower
masses.”

Tests suggest that, for the bulk of the stars,
bias in the estimated masses and radii is no

REPORTS

larger than the estimated uncertainties (27). On
the assumption that the ‘observed masses and
radii are robust, this result may have implica-
tions for both the star-formation rate and the
initial mass function of stars. Mixing or over
shooting of material between different layers
(including stellar cores) and the choice of the
so-called mixing length parameter, which mea-
sures the typical“Kéngth scale of the convection
and is one of the few free parameters in stellar
evolution theory, may also be refevant. It is yet
to be tested whether the expected small fraction
of unresolved binaries could have contributed
to the mass discrepancy,
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Cume # 362 ~ Solutions
Jason Jackiewicz
April 16, 2011

This exam covers material related to stelar properties obtained from pulsational characteristics. It is
partly based on the attached article, Chaplin et al., “Ensemble Asteroseismology of Solar-Type Stars
with the NASA Kepler Mission,” Science, 332, 213, (2011). Even though you pessibly have not studied
much about stellar oscillations, you will be able to rely upon basic principles to work your way through
these questions. '

The exzpected or anticipated passing grade is 75%, or about 49 out of a total of 65 points.

Show all work clearly and legibly, and if you 'ca'n_’t solve something completely, at least give an idea
of how you might go about it. Make sure to answer all the sub parts of each question. DO NOT
use your calculators for any formulae or constants, only to calculate. Remember that Ry =
6.96 x 10'%cm. Start each numbered problem on a new piece of paper. Take your time, think clearly,
read each sentence carefully, ask for clarification, and best of luck to you!

I Qualitative questions (28 points)

1. [5 points]. What spectral types of stars are in this catalogue? Discuss some differences
between main-sequence and subgiant stars?

ANSWER: We have (a few K, ), G, and F type stars {~ 5000 — 7200 K), both main sequence qnd
subgiant, using the HR diagram (2A) in the paper. Subgiants are slightly brighter than main-
sequence stars, and a bit bigger too. They are likely fusing hydrogen in o shell around the core
since the core contracted and heated up:

2. [7 points]. In the second paragraph, the authors say that main-sequence and subgiant
stars are unstable to convection. Talk about the convection zones of these types
of stars, and describe in some detail what a convective instability is. Try to also
express your ideas about convection as an equation, at least an approximate one that
illustrates your explanation. What does convection and the convection zone have to
do with stellar oscillations?

ANSWER: The convection zones of some of these types of stars make up the outer envelope where
heat gets transported by convection to the surface. Since some stars in the sample are more massive
than our Sun (as shown in Figure 34), it’s likely that some of these stars have convective cores -
too. A convective instability may occur inside a star when g parcel of gas at a particular density is
displaced adiabatically to a slightly shallower depth. If the parcel has a lighter density than its new
surroundings, it continues its march upwards. This is a convective instability. More technically,
it occurs when the local temperature gradient is larger (steeper) than the adiabatic temperature
gradient (dT/dr > |dT/dr|,s). The convective and turbulent motions in stars excites woves, and
can also damp them and pump energy into them. Convection is, therefore, thought to play a major
role in driving solar-like oscillations.

3. [6 points]. In the third paragraph the cadence of Kepler photometry for solar-type
~stars is discussed. Explain roughly what cadence is minimally necessary for these
types of stars to. study their pulsations. Based on a cadence ‘you supply, what would
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the number of nodes along the surface, £, usually cancel each other out, limiting us to only
the first few low £ values.

The accuracy of the expressions you derived in part (a) could help determine
any biases in the mass and radius estimates you derived in part (b). How could
we use numerical modeling of stars to help us ascertain this accuracy? Then,
given that we don’t really know how to simulate very well the excitation and
damping of modes in stars, which expréssion, or parameter (from part (a)), is
less amenable to testing with simulations?

ANSWER: With stellar modeling we may compare the values of, for ezample, Av computed
for a model of mass M and radius R, with the large separation that the model provides in its
sumulated frequencies. We can do the same for vyax given the mass, radius and temperature
of the model, and compare with the model’s frequencies of mazimum amplitude. However,
since we don’t have a good handle on the damping and excitation for solar-like stars, it is
extremely unlikely the mode amplitudes will be accurate, which depends highly on these things.
Therefore, doing this experiment with vmax will not be successful.







