Cume # 343
Jason Jackiewicz
April 4, 2009

This exam deals with something we always love to conveniently ignore — magnetic fields! There
is no accompanying article to peruse. You will work through problems and hopefully learn as you
proceed. Most of the questions do not expect you to have much prior knowledge of this subject,
except some basic BE&M and solar/stellar parameters. You will derive things mainly from first
principles, leading up to an application in the final section. Thus the exam is, as its name suggests,
cumulative. There is an appendix towards the end with any formulas 6r constants you may need.

The ezpecied passing grade is about 65%, or 55 out of a total of 85 points. There are a couple
questions that are for extra credit and 5 possible points. These are not counted as part of the 85
points. [t is advisable that you attempt these last, if you have time left. Partial credit applies to
these too. Most of the problems are of the “show this” type, so that if you can’t derive the result,
at least you’ll have the answer in hand to complete subsequent parts. Show all work clearly and
legibly, and if you can’t solve something completely, at least give an idea of how you might go about
it. For questions where you must provide a name, and can’t, at least give what units it should have
or anything helpful like that. Start each numbered problem on a new piece of paper. Take your
time, think clearly, ask for clarification, and best of luck to you!

I Magnetic-field configurations

For many planetary and stellar situations, the magnetic field outlines the structure of various
phenomena and it is therefore important to know how to visualize magnetic field lines (lines of
force). For any known magnetic field B = (B, By, B;), the magnetic field lines are given by

drx dy d=z

el (1

B, By B,
Boldface quantities will denote vectors throughout. Equation (1} is a system of differential equations
defining curves in three-dimensional space, whose solution is found by integration. These curves
are called field lines and are tangent to the direction of the field at each point. The spacing of the

lines corresponds to the strength of the field. The closer, the stronger. The lines are also required
to have arrows to denote the direction of the field.

1. [5 points]. As an example, take a look at Figure 1. This plot shows the field lines for the
case of B = (y,z,0) as well as the normalized magnitude of the field B = |B|. Around the
edges where the field lines are close together is where the field is relatively strong. Also note
the directional arrows.

(a) Show that this magnetic field is a physically plausible one (i.e., no sources or sinks —
remember one of Maxwell’s equations!). '

(b) By using equation (1), derive the correct expression for the field lines for this example
and then use it to explain why Figure 1 looks the way it does. Also, explain why the
arrows do point in the directions given.



2. [10 points]. Now try one for yourself. Take the field B = (0, z2, 0).

(a) Check first that this is a physical magnetic field.
(b) Solve for the equation of the field lines.

- {c} Make two plots. The first one is a 1D plot of the magnitude of the field as a function of

o position. The second one should be a sketch of the field lines in the z — y plane. Make

sure to consider the field as it gets stronger and don’t forget to label the ﬁgﬁre with
ATTOWS denoting the direction of the field Jines.

IT  Derivation of magnetohydrodynamics (MHD)

Now we will derive some useful, physical equations that determine the time evolution of a magnetic
field.

1. [10 points]. Consider two of Maxwell’s equations (in cgs units):

168
VxE = =% @)
18E 47, . :
VxB = tymtod @)

The eleciric field is E and current density is j. These equations are usually valid in astro-
physical fluids or gases of plasma.

{a) To whom are the names of each of these two equations attributed (after Maxwell's
extension of them)? They are named after two very famous physicists.

(b} Do a unit analysis of equation (2) using a characteristic length scale L and time scale
t. Also assume a characteristic speed u = L/t that is non-relativistic. What can you
immediately qualitatively conclude about the magnitudes of B and E?

(¢) Do asimilar analysis for equation (3). Under the same approximation that you discerned
in (b), show that you can safely ignore one of the two terms on the RHS side of that
equation. -

- (d) [Baztra credit: 2 points]. What is the common name of that ‘neglected’ term?

2. [35 points]. Now consider another relationship between the current density and the electro-

. magnetic fields: _ :
. v
g—a(E+-E><B), (4)

where o is the conductivity and v is the velocity of the plasma viewed from a rest frame.

(2) What law’ is equation (4) usually referred to as? Using equations (2), (3), (4) and any
approximations you've made, derive the induction equation below solely in terms of the

- magnetic field: '
%—fst(vaan?B._ (5)

(b) What did you find for the coefficient 77 What units must it have? What physical
interpretation does the first term on the RHS of equation (5) have? The second term?
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(c) Consider a fluid at rest in equation (5). Define & time, 74, using n and any characteristic
scales, as before. It can be shown (for a hydrogen plasma) that n = 109732 25~
where T is the temperature, in Kelvin. 'W\muld the time 74 be if we take the
magnetic field in a sunspot (assume a plasma temperature a bit less than the surrounding
photosphere and a ball-park size for a sunspot)? Comment on the value that you find
in terms of the physics and time and length scales. What word do you think the “d” in
T4 might stand for?

(d) Astrophysical fluids and plasmas are not generally at rest, however. Therefore, the induc-
tion equation is really a struggle between the relative strengths of the two terms. Define
an appropriate order—of-magmtude ratio of the two terms on the RHS in equation (8),
called the magnetic Reynolds number, Ry, using any previous scales and quantities, and
show that for typical solar values — try a sunspot again — it is enormous compared to 1 (if
it’s small, you've probably got your ratio upside-down, so re-define it). What does this
imply for the conductivity of typical stars? How would the magnetic Reynolds number
change in the corona of the Sun compared to the sunspot (show and describe this with
simple hand-wavy arguments)?

{e) Since the Reynolds number is so large in most cases, we can safely neglect one of the
terms in the induction equation. First write down the resulting induction equation, and
explain the physical significance of it in terms of dynamics. (Hint: For its significance,
think about a plasma at rest.)

(f) [Bxtra credit: 3 points]. Current 3D numerical simulations of convection in stars are
only able to employ Reynolds numbers of roughly ~ 10 or so, much smaller than what
we've seen to be the typical values. Based on your derivations, what factors may be
limiting pushing this value higher in these simulations? Can you think of any numerical
schemes or tricks to get around this obstacle to make the equations in the simulations
more physical?

Congratulations! You've just (hopefully) derived a good deal of ideal magnetohydrodynamics.

Applications

[25 points]. We've been talking about the magnetic field so much, let’s find out if it’s actually
important for stars after all! The above MHD equations need to be coupled to an equation
of motion to be useful. Let’s define it as

8 1
S+ V)v———VP+g+p—3xB (6)

where P is the gas pressure, p is mass density, and g is the acceleration due to gravity.

(a) What is the term ¢™1j x B commonly called?

(b) Consider a stationary gas where the effects of gravity are not significant over the length
scales involved compared to the other terms. Using equation (6) and any other ones you
may need, define and derive what’s called the plasma 8 parameter:

4nP
=2 (7)

where B = |B|.



(9

(d)

The plasma (3 is an approzimate measure of the relative strength of the gas pressure to
the magnetic pressure. Let’s find some values of it for the Sun. Consider the Sun to be
pure, fully ionized hydrogen and an ideal gas. Show that the plasma 3 parameter is

BrTx107%n, B2, (8)

where 7, is the electron number density, and B is usually given in units of gauss (G).

Use the above equation to describe, for a star like the Sun, when we can ignore magnetic
fields or when magnetic fields dominate. Consult Figures 2 and 3 for some values you
may need. Use your best guesses for all the quantities you do not have at hand. Consider

 specifically 4 in the () radiation zone, (4i) the ‘quiet’ photosphere, () a sunspot, and
(#v) the corona. Explain why, physically, these values of 3 make sense to you, as you

" work through each region.




APPENDIX: USEFUL ITEMS

e For any vector A:

VXx(VxA)=V(V-A)—(V-V)4 (9)
o The ideal gas law is -
p;-fﬁ_, . (10)
H ' :

where R = 8.3 x 107 cm?s—2K~ : 1s the gas constant, p is the 1 mass den31ty, and u is related
7

to the mean molecular weight 7 o by
g = 2Tl T Mellte —I—:.neme = pmg. ' (11)
; np + e : .

The ns are number particle densities, the ms are masses, a.nd the subscripts p and e denote
proton and electron, respectlvely :

e Mass of a proton = 1.67 x 10724 g,



|B| [arbitrary normalized units]

Figure 1: Field lines and directions for B = (y,x,0). The background gray scale is the magnitude
of the magnetic field, |B|, normalized to unity. See problem 1.1
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Figure 2: Electron number density versus fractional radius from a model of the Sun. See Prob-
lem III.1d.



1012 —~3107
1011 leg_=-- 1168
010 . ' 10°

T Ilillli
|III!1I|

Temperature T, [K]

Particle density (cm™)

10

)
[{=]
[
—
A
il

__———lﬂ-, \K

.8
10 . R | : o i
10° 103 19%
Height above photosphere (km)

/

10

—
(]
62

Figure 3: Electron number density and temperature versus height in the solar atmosphere. Ignore
np, and the thick vertical line. From Aschwanden 2006. See Problem IIL.1d.




Cume # 343 - Solutions
Jason Jackiewicz
April 4, 2009

This exam deals with something we always love to conveniently ignore -— magnetic fields! There
is no accompanying article to peruse. You will work through problems and hopefully learn as you
proceed. Most of the questions do not expect you to have much prior knowledge of this subject,
except some basic E&M and solar/stellar parameters. You will derive things mainly from first
principles, leading up to an application in the final section. Thus the exam is, as its name sugpests,
cumulative. There is an appendix towards the end with any formulas or constants you may need.

The ezpected passing grade is about 65%, or 55 out of a total of 85 points. There are a couple
questions that are for extra credit and 5 possible points. These are not counted as part of the 85
points. It is advisable that you attempt these last, if you have time left. Partial credit applies to
these too. Most of the problems are of the “show this” type, so that if you can’t derive the result,
at least you'll have the answer in hand to complete subsequent parts. Show all work clearly and
legibly, and if you can’t solve something completely, at least give an idea of how you might go about
it. For questions where you must provide a name, and can't, at least give what units it should have
or anything helpful like that. Start each numbered problem on a new piece of paper. Take your
time, think clearly, ask for clarification, and best of luck to you!

I Magnetic-field configurations

For many planetary and stellar situations, the magnetic field outlines the structure of various
phenomena and it is therefore important to know how to visualize magnetic field lines (lines of
force). For any known magnetic field B = (Be, By, B;), the magnetic field lines are given by

dz dy d=z
B: By B, (1)

Boldface quantities will denote vectors throughout. Equation (1) is a system of differential equations
defining curves in three-dimensional space, whose solution is found by integration. These curves
are called field lines and are tangent to the direction of the field at each point. The spacing of the
lines corresponds to the strength of the field: The closer, the stronger. The lines are also required
to have arrows to denote the direction of the field.

1. [5 points]. As an example, take a look at Figure 1. This plot shows the field lines for the
case of B = (y,z,0) as well as the normalized magnitude of the field B = |B|. Around the
edges where the field lines are close together is where the field is relatively strong. Also note
the directional arrows.

(2) Show that this magnetic field is a physically plausible one (i.e., no sources or sinks —
remember one of Maxwell’s equations!).

ANSWER: No sources or sinks is the solenoidal constraint:

o 2]



Another way some students tried was to

equation;

where dA is some unit area vector. Qk ...

use the integral form of the same

‘ j{B-dA=O, 3)

if you wish. The way to do this

then would be to switch to polar coordinates:

where we used the
makes it all vanish.

(b} By using equation (1),

j{B.aA = j{BdAcose (4)
dA = dzdy = rdrdd (5)
T pr2r '
/ / 2 cos@drdf = 0, (6)
0 Jo

fact that B = \/y2 + 42 = r. It’s the integral over 8 that

derive the correct expression for the field lines for this example

and then use it to explain why Figure 1 looks the way it does. Also, explain why the

arrows do point in the

directions given.

ANSWER: Onlys consider the z — y plane. Set up the ratio:

dx dy
— = == 7
z-2 ™)

dz dy

= - = 8
- =, (8)
/:r:dsc = fydy, (9)
/2 = /24 C, or (10)
t*—y? = C = const (11)

This describes an equation of a hyperbola, which is evident from Figure 1.
The lines are spaced far apart near the origin, and closer together as z and Yy
are increased in absolute magnitude. The arrows are straightforward. Along
the line x = 0, for positive (negative) y the arrows should point in the positive

+ (negative ~) direction. Along the y

2. [10 points).

= 0 line, the situation is similar.

Now try one for yourself. Take the field B = (0, 2%, 0).

(a) Check first that this is a physical magnetic field.

ANSWER:

9 2_




(b)

Solve for the equation of the field lines.

ANSWER: d 0
| Egmﬁ = z = const. (13)

This means the field lines will be along the y direction.

Make two plots. The first one is a 1D plot of the magnitude of the field as a function of
position. The second one should be a sketch of the field lines in the z — y plane. Make
sure to consider the field as it gets stronger and don’t forget to label the figure with
arrows denoting the direction of the field lines.

ANSWER: See Figures 2 and 3. The arrows will always point in the positive
direction because B, is never negative.

II Derivation of magnetohydrodynamics (MHD)

Now we will derive some useful, physical equations that determine the time evolution of a magnetic

field.

1. [10 points]. Consider two of Maxwell’s equations (in cgs units):

10B

18E dn
= 2% T 5
VxB c8t+ - (15)

The electric field is E and current density is j. These equations are usually valid in astro-
physical fluids or gases of plasma.

(a)

"To whom are the names of each of these two equations attributed (after Maxwell’s ex-
tension of themn)? They are named after two very famous physicists.

ANSWER: Equation (14) is Maxwell’s extension of Faraday’s Law, and equa-
tion (15) is his modification of Ampere’s Law (Maxwell added the displace-
ment current term).

Do a unit analysis of equation (14) using a characteristic length scale L and time scale
t. Also assume a characteristic speed u = L/t that is non-relativistic. What can you
immediately qualitatively conclude about the magnitudes of B and E?

ANSWER: ,
I~ et (19
ERE @)
g ~ 2k (18)

o2



‘We see that the magnetic field is much largér than the electric field for the
smallish velocities we are considering.

(c) Do a similar analysis for equation (15). Under the same approximation that you dis-
cerned in (b), show that you can safely ignore one of the two terms on the RHS side of
that equation.

ANSWER.:

B 1E

I~ e7ts (19)
LE j

B~ 23te (20)
ulE i
w\Z |

B ~ (E) B+, (22)

where we’ve used the result from the analysis in (b) for £/B. We see that
the term ¢ '0,F is really small and is known as the displacement current.

(d) [Bxira credit: 2 points|. What is the common name of that ‘neglected’ term?

ANSWER: The displacermnent current.

2. [35 points]. Now consider another relationship between the current density and the electro-
magnetic fields:

'j=o~(E+%><B), - (23)

where ¢ is the conductivity and v is the velocity of the plasma viewed from a rest frame.

(a) What ‘law’ is equation (23) usually referred to as? Using equations (14), (15), (23) and
any approximations you've made, derive the induction equation below solely in terms of

the magnetic field:

%?-va (v x B) + V2B, (24)

ANSWER: Equation (23) is known as Ohm’s Law. Since the thing we want
to show has a &B in it, it makes sense to make good use of equation (14).
It is found pretty easily by solving for E in equation (23) and plugging that
into equation (14). Then solve for j in equation (15) (neglecting the displace-
ment current as we have shown) and plugging it into the previously derived
equation. Now everything is in terms of v and B. The last thing is to use
the vector identity in equation (45), knowing to use the zero divergence of
the magnetic field. '




(b)

What did you find for the coefficient 7 What units must it have? What physical inter-
pretation does the first term on the RHS of equation (24) have? The second term?

ANSWER: n = ¢*/4no. It’s units must be L?/T to match the units of the
two other terms (B/t). The first term on the RHS is the advection of the
magnetic field due to plasma flows. The second term represents the diffusion
or decay of the magnetic field.

Consider a fluid at rest in equation (24). Define a time, 74, using 1 and any characteristic
scales, as before. It can be shown (for a hydrogen plasma) that n = 109732251,
where T is the temperature, in Kelvin. What would the time 74 be if we take the mag-
netic field in a sunspot (assume a plasma temperature a bit less than the surrounding
photosphere and a ball-park size for a sunspot)? Comment on the value that you find
in terms of the physics and time and length scales. What word do you think the “d” in
T4 might stand for?

ANSWER: The “d” is for diffusion or decay. If we ignore the velocity in
the induction equation, we are left with the diffusion equation:

oB

5 = anB (25)

From this expression we can define a diffusion timescale just from unit anal-
ysis of the RHS of equation (25).

Taig = L2 /7. : (26}

So this timescale represents a quantity of the temporal solution of equa-
tion (25), something like B(t) ~ exp(~t/74). For a sunspot, let’s take the
temperature to be 5000K, which gives n = 3000m?s 1, and its size to be
L~ 10"m (about Earth sized). This gives a diffusion time of

Tai = 3.5 x 10'%s,  or 1000 years! | (27)

The magnetic field cannot decay away in a sunspot on large length scales due
to diffusion: that time scale is just too large. Other factors are responsible
for the short lifetime (~1 month) of sunspots, including diffusion on small
scales. Although the magnetic field is still present beyond their actual life-
time, it just gets redistributed.

Astrophysical fluids and plasmas are not generally at rest, however. Therefore, the in-
duction equation is really a struggle between the relative strengths of the two terms.
Define an appropriate order-of-magnitude ratio of the two terms on the RHS in equa-
tion (24), called the magnetic Reynolds number, Ry, using any previous scales and
quantities, and show that for typical solar values - try a sunspot again — it is enormous
compared to 1 (if it’s small, you've probably got your ratio upside-down, so re-define it).

‘What does this imply for the conductivity of typical stars? How would the magnetic

Reynolds number change in the corona of the Sun compared to the sunspot (show and

describe this w1’ch simple hand-wavy arguments)‘?



ANSWER: The magnetic Reynold’s number is given as the ratio of the ad-
-vective to the diffusive term:

' Vx{vxB)
uB/L
= LB/ (29)
2
- v or £— (30)
n T

Taking the same values as before, L = 10'm, 5 ~ 3000m?s~!, and » =~ 1000m/s

- (typical speeds of the plasma near sunspots), we find

Rar ~ 105> 1. (31)

_If we look back at the definition of n, we see that it is inversely proportional

to 0. Thus, to a good approximation, the plasma is infinitely conducting.
It is even truer for the corona, where the length scales are larger and the
velocities can be too, and the temperatures are higher (i.e., n smaller).

Since the Reynolds number is so large in most cases, we can safely neglect one of the
terms in the induction equation. First write down the resulting induction equation, and
explain the physical significance of it in terms of dynamics. {Hint: For its significance,
think about a plasma at rest.)

ANSWER: We can ignore diffusion for most situations in stars, so the in-

duction equation is

E:,:)—f=V><('w><B). | (32)

As mentioned before, this is an advection term. What it says is that the field
gets swept away by the plasma flows and moves with it. This sometimes is
referred to as the field being “frozen in” to the plasma. If there are no flows,

~ then the magnetic field is constant in time — this implies that a flow affects

(f)

the magnetic field.

{Bxtra credit: 3 points]. Current 3D numerical simulations of convection in stars are
only able to employ Reynolds numbers of roughly ~ 102 or so, much smaller than what
we've seen to be the typical values. Based on your derivations, what factors may be
limiting pushing this value higher in these simulations? Can you think of any numerical
schemes or tricks to get around this obstacle to make the equations in the simulations
more physical?

ANSWER: First consider that large Reynolds numbers imply large length
scales, velocities, etc. But numerical simulations use spatial and time deriva-
tives that require very fine meshes for accuracy. It is very hard to fulfill both
requirements simultaneously, and so compromises are made. Intermediate
Reynolds numbers are used, but this leads to other problems. One can’t take




an intermediate number and then ignore the diffusion term, but this is com-
mon. Therefore, what codes use are “artificial diffusivities”, which damp out
unwanted modes or instabilities without having to solve a full self-consistent
induction equation. These are phenomenological terms that are added for
convenience.

Congratulations! You've just (hopefully) derived a good deal of ideal magnetohydrodynamics.

IIT Applications

1. |25 points]. We've been talking about the magnetic field so much, let’s find out, if it’s actually
important for stars after alll The above MHD equations need to be coupled to an equation
of motion to be useful. Let's define it as

v 1 1
b } —_Zvyp Sl
5 + (v- Vv pV +g+ pcj x B, (33)

where P is the gas pressure, p is mass density, and g is the acceleration due to gravity.

(a)

What is the term ¢ '§ x B commonly called?

ANSWER: It is clear that this is a force and it is known as the Lorentz
force (sometimes there is also an electric field in there.)

Consider a stationary gas where the effects of gravity are not significant over the length
scales involved compared to the other terms. Using equation (33) and any other ones
you may need, define and derive what’s called the plasma 8 parameter:

4P
where B = |B]|.
ANSWER: After ignoring the terms we need to we have
1
VP = Ej x B. (35)
From Ampere’s Law,
= C
j= 47TV x B. (36)
Then 1
P=—(VxB)xB, 37
VP=_(VxB)xB, (37)

and taking a characteristic length scale over which the gradients don’t vary
much:

P B?
L 4nL’ (38)
47 P



(c)

(d)

The plasma 3 is an approzimate measure of the relative strength of the gas pressure to
the magnetic pressure. Let’s find some values of it for the Sun. Consider the Sun to be
pure, fully ionized hydrogen and an ideal gas. Show that the plasma 5 parameter is

BrTx107®¥n,TB2 (40}
where 7 is the electron number density, and B is usually given in units of gauss (G).

ANSWER: So P = pRT/u. By ignoring the electron mass, we find that
1t = 0.5 using the appendix, so P = 2pRT. We have so far

8w .
The next step is to realize that the mass density p is just the particle number

density times the mass, p = nm. The number of particles, because of full
ionization, is ne + ny, = 2n., and we can use the mass of the proton. So

‘B:

- p = 2nemyp. Collecting now we have:

= 167(8.3 x 107)(1.67 x 10™2)n, T B2 (43)
= Tx 107 ¥ n,TB2 (44)

Use the above equation to describe, for a star like the Sun, when we can ignore magnetic
fields or when magnetic fields dominate. Consult Figures 4 and 5 for some values you
may need. Use your best guesses for all the quantities you do not have at hand. Consider
specifically 5 in the (%) radiation zone, (4i) the ‘quiet’ photosphere, (#ii) a sunspot, and
(iv) the corona. Explain why, physically, these values of 8 make sense to you, as you
work through each region.

ANSWER: (i) For the radiation zone let’s consider the halfway point of
the solar radius. A sensible temperature is about 7 million K. The main
point here is that there is no known magnetic field to speak of. The elec-
tron density, from the figure, is 10?%. We can take 1 gauss for the B field.
This gives 8 =~ 10'®. Huge! This makes sense since the plasma pressure just
dominates anywhere inside the Sun. Magnetic fields are confined, if there
are any, to thin flux tubes, unable to expand. (i) At the surface, we take
a temperature of 6000K, n. ~ 10'%, and a quiet-Sun field over normal length
scales is usually about 100 G. This gives § = 40. The plasma still dominates,
but the magnetic field has more freedom. (7iz) In a sunspot, let’s take the
temperature to be 5000 K and the field to be 2000 G. Keeping the den-
sity the same as the surrounding plasma (even though it’s likely less since
the spot is “evacuated”), we find 8 < 0.1. One must expect here an answer
less than one, otherwise sunspots would not hold their structure. (i) In
the corona, from Figure 5 we can take a temperature of 2 million degrees
and a density of 108, The magnetic field is not so strong, relatively, so we’ll
take B = 10 G. This gives § =~ (0.014. Again, we know the plasma moves




with the magnetic field in the corona (think coronal loops), so the answer
should be less than one. It should be quite less than one too. It should be
noted however that there are regions of the corona where J is greater than
1, and this is close to the far extent of it where the solar wind is accelerated.



. ApPPENDIX: USEFUL ITEMS

e For any vector A:

Vx(VxA)y=V(V-A)—(V-V)A (45)
¢ The ideal gas law is
p= L (46)
7

where R = 8.3 x 107 cm?s—?K~! is the gas constant, p is the mass density, and u is related
to the mean molecular weight 7 by

L -k (47)
Nip + Ne

The ns are number particle densities, the ms are masses, and the subscripts p and e denote
proton and electron, respectively.

e Mass of a proton = 1.67 x 1072% g.

10




[B| [arbitrary normalized units]

Figure 1: Field lines and directions for B = (y,z,0). The background gray scale is the magnitude
of the magnetic field, |B|, normalized to unity. ‘See problem .1
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Figure 2: Magnitude of magnetic field for B = (0, %2,0). See problem 1.2
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Figure 3: Field lines and directions for B = (0, z%,0). See problem 1.2
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