This cume is partly motivated by and will ask about material discussed in the letter: "Analysis of a JWST NIRSpec Lab Time Series: Characterizing Systematics, Recovering Exoplanet Transit Spectroscopy, and Constraining a Noise Floor" by Rustamkulov et al (2022). The paper is perhaps a little technical. Don't get overly hung up on all of the details; we'll just be using this to motivate some questions. As you're reading, think about transits and extrasolar planets and try to follow the basic idea of what they are saying.

```
A 75 percent grade will guarantee a pass. Gravitational constant G=6.67\times 10^{-8}cm^3g^{-1}s^{-2}, mass of Sun M_{sun}=2\times 10^{33}g, radius of Sun R_{sun}=6.96\times 10^{10}cm, effective temperature of Sun T_{eff,sun}=5777 K, radius of Earth R_{earth}=6.38\times 10^8cm, radius of Jupiter R_{jupiter}=6.99\times 10^9cm, speed of light c=3\times 10^{10}cm/s, 1pc=3.086\times 10^{18}cm, 1au=1.496\times 10^{13}cm
```

- 1. (23 points) Transits and Transit Spectroscopy
 - (a) (5 points) Describe what an extrasolar planet transit is. Draw a diagram showing the star (drawn as a circle) and the planet during a transit, and a separate diagram showing a light curve of a transit, and show how the two diagrams are connected.
 - (b) (3 points) If you are just measuring total brightness (photometric transit), what physical properties of the extrasolar planet are you learning about?
 - (c) (4 points) If you could observe a transit of Jupiter across the Sun from another star, what would the fractional change in brightness be? How about Earth? (note constants above).
 - (d) (5 points) Describe the idea behind transit spectroscopy. What part of an extrasolar planet are you trying to learn about with transit spectroscopy? Again, draw a diagram showing the relevant geometry, starting with the star as a circle.
 - (e) (3 points) Imagine (it's not true!) that the atmosphere of some extrasolar planet was opaque at 889 nm, and transparent at 1000 nm. Sketch a light curve for the two different wavelengths.
 - (f) (3 points) What is the expression that relates physical properties of the system to the spectroscopic difference that you described in 1e?
- 2. (16 points) The paper simulates observations of two objects: the warm Neptune GJ436b (T_{eq} 700K, J=6.9) and the temperate terrestrial planet TRAPPIST-1 d (T_{eq} 300 K, J=11.35)
 - (a) (2 points) What is a J band magnitude (wavelength range and type of magnitude, i.e., apparent or absolute?)?
 - (b) (2 points) What object is the J band magnitude referring to (remember we are talking about planetary systems)?
 - (c) (2 points) What are the relative brightnesses (the flux ratio) of the objects with J=6.9 and J=11.35?
 - (d) (2 points) What object is the equilibrum temperature (T_{eq}) referring to (remember we are talking about planetary systems)?
 - (e) (3 points) Qualitatively (i.e., in words), what is the equilibrium temperature?
 - (f) (5 points) What expression would you use to calculate T_{eq} ?
- 3. (6 points) NIR Spectroscopy
 - (a) (2 points) Given the resolution of the NIRSPEC PRISM mode (second paragraph of paper), what is the minimum width of a spectral feature that could be resolved?
 - (b) (2 points) What type of absorbers/transitions do you think PRISM will be most sensitive to?

- (c) (2 points) The paper describes the data reduction for NIRSpec, and talks about fitting the up-the-ramp count rate. Describe what this means in the context of how the infrared detector is being operated, in particular, how infrared detectors are read out.
- 4. (5 points) The paper suggests a noise floor of 10 ppm (parts per million). How many photons need to be collected per wavelength channel so that, statistically, the photon noise matches this noise floor?
- 5. (10 points) Statistics
 - (a) (2 points) The paper talks about a 3σ upper bound of 14 ppm. What does 3σ mean in this context?
 - (b) The paper talks about χ^2_{ν} .
 - i. (2 points) How is this quantity defined?
 - ii. (2 points) What would you need to know to determine whether the quoted values of χ^2_{ν} are consistent with the expected uncertainties?
 - (c) The paper talks about fitting models to the light curves that include a "systematics model", S(x) (equation 1). It tries to motivate what terms are needed in the model using the Bayesian and Akaike Information Criteria (AIC and BIC).
 - i. (2 points) Describe the concept behind AIC and BIC. What quantities do they depend on?
 - ii. (2 points) Based on Table 1, which terms in equation 1 would you recommend are justified? Explain your reasoning.