Rubric for Cume 412

2 (14 pts)	2b (6) 3 2c (2) 3 2d (4) 3	1 pt 3 pts 3 pts 2 pts	3 electrons 2 electrons Fine structure lines with the same n,l (principle and angular momentum quantum numbers) For a diagram showing same n,l with different j quantum numbers Spin-orbit coupling interactions OIII] is semi-forbidden line, does not obey dipole selection rules, must be collisionally excited, not photo-excited CIV is allowed transition, obeys dipole selection rules, so in principle can be photo-excited (though it is not in this gas structure)
3 (15 pts)	3b (4) 3 3c (4)	1 pt 1 pt 2 pts 2 pts 3 pts 1 pt	Ionization balance that is density, temperature, and photon field dependent. Photon field NOT in equlibrium with particle field. Ionization from lower ions is due to photoionization, so depends on SED of local radiation field Recombination of free electrons onto higher ions, so density and T dependent The excitation of the b-b transition is due to collisional excitation with free electrons, density and T dependent The de-excitation of the b-b transition is due to spontaneous emission, depends upon Einstein A coefficient E = hc/lambda = 0.57 Ryd The authors state that the emission is due to collisional excitation at about 0.5 Ryd T = E/k = 79,000 K
5 (10 pts)	4b (2) 4c (4)	1 pt 1 pt 1 pt 2 pts	$ 1+z = lambda_obs/lambda_rest \\ z(1660.81) = 6.1031 \\ z(1666.15) = 6.1045 \\ z_ave = 6.1038 \\ lambda_obs = 1215.67*(1+6.1038) = 8635.88 \text{ Ang} \\ Dlambda/lambda = Dv/c \\ lamda_obs(Lya)=8642.5 \text{ Ang}, c*(8642.5-8635.88)/8635.88 = 230 \text{ km/s} \\ The wavelength of the line peak flux is not the same as the line flux-weighted mean quoted in Table 1 and used for our calculation$
5 (6 pts)	5a (2) 2 5b (4) 2		Resonance lines are transitions of a single active electron from the ground state to the lowest energy excited state. (optional: They obey the dipole slection rules and have large cross sections). The resonant lines are optically thick so that the photons in the line are effectivey "scattered". Thus, peak line flux reflects the velocity of last scattering at which the lines become optically thin
6 (8 pts)	6b (4) 3	1 pt 2 pts 2 pts	Ionization, not excitation; if Hell existed, excitation would occure readily The line from Hell is not present because Hell ion is not abundant The galaxy is selected to be in low mass regime. Lower mass galaxies typically have lower metallicity the strong Ly-alpha may also bias the galaxy toward low metallicity and low dust (the line is not self-absorbed) so, the selection of this galaxy may have biaed it toward being a low metallicity galaxy From Figure 4 (left) there are only two such galaxies ever meaured! That's not much to stand on! Jury still out!!! however, I will accept most any answer here as long as it is sensical. A galaxy with a large offset will have a higher escape fraction of Lya photons further out into the IGM Lya emitters are good probes for determining the ionzation state of the IGM, and the distribution of velocity offsets is a critical input to the models that try to determine the ionization state of the IGM.