la	3pt	3pt	to study the CGM component of the baryon cycle and its role in galaxy evoution
1b	AND STREET		data: MAGiiCAT database; HST/WFPC2 images; HIRES/UVES QSO spectra (R,dv=6 km/s
	- r -		methods: data taken by self and mostly from literature and archives
1c	3pt		images: GIM2D->galaxy orientations
			QSO spectra: pixel dv analysis->TPCFs ; VP fitting->column densities
			sci: construct TPCFs for several galaxy subsamples and compare w/ chi^2 tests
 Ld	3pt		blue face-on/minor-axis galaxies show largest velocity dispersion of cool CGM gas
			probably due to star formation driven biconical outflows
		•	
2a	4pt	2pt	correct 1+z relationship
		2pt	correct calculation
2b	6pt	4pt	comoving vel diff = c*dz; -2 pts if confused with absolute velocity from observer
		2pt	for full credit need comoving correction, i.e., divide by 1+z
2c	8pt	4pt	infalling: Line 1 on observer side, Line 2 on QSO side
		4pt	outflowing: Line 1 on QSO side, Line 2 on observer side
		encipat nemaces	
}a	6 pt	2pt	EW>0.04 angstroms for features to be included (not systems)
		2pt	important so that result independent of signal to noise of the absorption line
		2pt	
		-	absorption lines will preferentially show larger velocity splittings
3b	8 pt		higher redshift systems are at redder wavelengths and will have higher signal to noise
			higher redshift systems will preferentially reveal weak absorption
			thus, higher redshift systems can preferentially show broader kinematics
		2pt	thus, the deduced redshift evolution may be a signal to noise bias
14.		2-4	for an extension (in EZ, Dhis AE)
b			face-on, minor-axis (i>57, Phi>45) blue, minor-axis (B-K<1.4, Phi>45)
c u		F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ld	zpi	zpt	blue, face-on (B-K<1.4, i>57)
5a	4pt	1nt	method is boot strap analysis (or bootstrapping)
	THI	THE	metrion is book strap analysis for bookstrapping)