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Uncovering strong Mg I¥ absorbing galaxies: imaging below the Lyman limit
L. Christensen, P. Noterdaeme, P. Petitjean, C. Ledoux, & J. P. U. Fynbo
(arXiv:0908.3893v1; MS12015 MNRAS)

Please start each question (by number) on a new sheet of paper, write on only one side of the paper, and
staple them together in order of question number when finished. It is strongly suggested that you read the
abstract very carefully. I will also say that the § 1, Introduction, is very helpful. .

1. [25 pts] The Lyman break and Lyman Break Technique {Hint: thinking about Figures 1 and 2 may be
helpful] '

(a) [10 pts] Consider a redshift z = 0 star-bursting galaxy, AGN, or quasar. Explain in your own words
what a Lyman break feature in the spectrum of said galaxy, AGN or guasar is. Include:

e What element is involved?
+ What ionization stage of the element is involved?

Exactly what physical process is occurring that gives rise to the break feature?

e At what wavelength does the break occur?
+ What overall wavelength range does the feature extend over?

(b) [5 pts] Draw a picture of a spectrum, observed counts versus wavelength, and include a Lyman break,
Be sure that your wavelengths are labeled properly. Label the break and/or the reglon over which the
~ break extends.

(c) [10 pts] The Lyman brea,k technique is an imaging method used to find high redshift ga.-laxies,. AGN,
or quasars. In your own words, describe how the Lyman break technique is applied in practice. That is,
for example, let’s say you were searching for z = 3 galaxies, AGN, or quasars. How would you design
and carry out your experiment and what would you look for as the signature of a 2 = 3 object? Be very
specific about the wavelength(s) you are targeting for your observations.

2. [12 pts} The authors apply a variation of the Lyman break technique; they are looking for dim high red-
shift galaxies that lie in projection very near to a much brighter background quasar. In §2, Observations,
the authors describe their selection method.

{a) [6 pts] Explain, briefly, the method that the authors employ, including how this exploits the presence
of the Lyman break feature, and why it is powerfully effective for searching for these dim galaxies.
-Include in your answer: _
¢ What critical role the z ~ 3 damped Lyman « absorbers {DLAs) play?
s To maximize their search, why did they require DLAs? Why not some other type of absorption
systern (what physical quantity is important)?

(b) [6 pts] Following the selection of the guasars, the author’s have data that provides for them the
redshifts of the galaxies they are trying to image.

e What are these data?

» How many galaxies are they trying to find?

o What are the redshifts of these galaxies?



3. [24 pts} Redshifted Absorption and Velocities -

(a) [4 pts] Say you known there is a Mg IT absorber at z = 1.5. 1If the rest—frame wavelength of Mg II is
2796 A, at what wavelength would you expect to observe the Mg II 12796 absorption profile?

(b) [10 pts] Lets say that the above profile has a full resi-frame velocity spread of 100 km/s. What is
the observed wavelength range over which you expect to see the absorption. {HINT: careful, remember
this system is at z = 1.5.] B '

(c) [10 pts| Now reverse the question. You see an absorption line centered at wavelength 5000 A and
you identify the line as Mg II A2796. The observed wavelength spread across the profile is 5 A. What is
the rest-frame velocity spread of the Mg I absorbing gas.

4. [29 pts] The AV parameter.
(a) [4 pts) In words, what is the AV parameter.

(b} [5 pts} Let’s say that you measured AV for a redshifted Mg IT A2796 profile in some data you
obtained. From the information given in this paper alone, could you estimate [M/H] for the absorbing
gas? If not, which reference(s) mentioned in the paper would you need to examine in order to find the
information required to make the estimate?

(c) [20 pts] Ok, backing up one step. Let’s say that you have a Mg II A2796 profile in some data you
obtained and you want to measure AV To your chagrin, this paper, nor any of the papers in the
literature anywhere provide an equation or describe the method on how to compute AVyy. Thus, you
need to determine how to make the calculation on your own (this scenario is common inresearch). Derive
an expression for AVyg in terms of the cut off velocities vy and v.. 0 that you can therefore make the
calculation.

[HINTS: Lets say that the word “absorption” translates to the quantity known as the flux decrement,

"1 — f(v)/ fo(v}, where f(v) is the observed flux at welocity v, and f.(v) is the continuum (unabsorbed)
flux at velocity v. You do not need to know the form of f(v); you are not being asked to evaluate your
relationship. Also, examine Figure 5, where the vertical dashed lines illustrate the locations of vy = 440
and v— = 40 -km/s. There is more than one way to write this expression. Partial credit will be given
for correct mathematical ideas and written explanations.]
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ABSTRACT

Context. The nature of the galaxies that give rise 1o absorption lines, such as damped Lyman-« systems {DLAs) or strong Mg lines,
in quasar spectra is difficult to ‘investigate in emission, These galaxies can be very faint and located close to the lines of sight of the

much brighter background quasars,

Aims. Taking advantage of the total absorption of the QSO light bluewards of the Lyman limit of two DLAs at z > 3.4, we look for

the continuum emission from intervening galaxies at z ~ 2 that arc
have equivalent width large enough to be potential DLA systems.

Methods. Deep images are obtained with the FOcal Reducer an
fields towards SDSS J110855+120953 and SDSS J140850+020
(W(Mgn) = 2.46 Ay and z = 1,98 (W{Mgm = 1.89 A), respect

identified via strong metal absorption lines. The Mg i1 absorbers

d Spectrograph (FORSI) on the Very Large Teiescope for the
322, These quasars have Mgn absorption lines at z =
ively,

.87
and each QSO has two intervening higher redshift DLAs

atz > 3: The U/ and R bands of FORSI lie blue and redwards of the Lyman limit of the background DLAs, allowing us to search for
emission from the foreground galaxies directiy along the lines of sight to the QSOs. ) :

Results. No galaxies are found close to the sight line of the QSO o a point source limit of Uap ~ 28.0. In both fields, the closest
objects lie at an impact parameter of ~5" corresponding to ~40 kpc in projection at z = 2, and have typical colours of star forming
galaxics at that redshift. However, the currently available data do not allow us to confirm if the galaxies lie at'the same redshifts as the
absorption systems, A more extended structure {s visible in the SDSS JI4085+020522 field at an impadct parameter of 08 or 7 kpe. -
If these objects are at z =~ 2 their luminosities are 0.03-0.04 L* in both fields. The star formation rates estimated from the UV flux are
0.5-0.6 Mo yr™', while the SFRs are half these values if the U band flux is due to Ly emission alone. :
Conclusions. The non-detection of galaxies near to the line of sight is most likely explained by low metallicities and luminosities of
the Mg galaxies. Alternatively, the Mg clouds are part of extended halos or in outflows from low-metallicity galaxies.

Key words. Cosmology: observations — Galaxies: high-redshift — Quasars: Absorption lines -~ Quasars:  individual:

SDSS 1 10855.46+!209_53.3, SDSS J140850.91 +020522.7

1. !ntroduéfion

During the past decade much information has been gathered
about the properties of high redshift galaxies from the surveys of
Lyman break galaxies (LBGs; Steidel et al. 1995, 2003). Since
their detection requires the galaxies to have relatively bright con-
tinuum emission, the Lyman break technique preferentially se-
lects massive galaxies (Erb et al. 2006b), and follow up spec-
troscopy have revealed relatively metal rich galaxies (0.4-0.8 so-
lar in Erb et al. 2006a), Alternatively, the spectra of high redshift
Quasars can reveal the existence of much fainter and more metal
poor galaxies through intervening absorption lines. Strong Hi
absorption lines with column densities in the damped Lyman-o

* (DLA) regime (log N(H1) {cm™2) > 20.3) arc believed to arise

when the sight line toward a QSO intersects a gas rich gataxy
{Wolfe et al. 1986, 2005).

* Based on observations collected at the European Southemn
Observatory, Chile, under programme IDs 380.4-0350 and 080.A-0482

Metal absorption lines indicate typical DLA metallici-
ties between one hundredih and one tenth solar (Pettini et al.
1999; Prochaska et al. 2002). The velocity profiles of the lines
(Prochaska & Wolfe 1997) can be explained by the complex dy-
namics of infalling clumps in a merging scenario (Haehnelt et al.
1998, Ledoux ctal. 1998; Nagamine et al. 2007). Numerical
simulations reproduce reasonably well the kinematics for =173
DLAs in a hierarchical model (Pontzen et al. 2008), where gas
is later distributed in discs at z = 0, Comparisons of local Hi
discs with DLAs at z > 2 have indicated that local H; discs
have different kinematics than high redshift DL.As (Zwaan et al.
2008), which may indicate that some DLAs could arise in star-
burst winds. or debris from tidal interactions. Winds may not be
solely responsibie for the large velocities indicated by the ab-

. sorption lines. Observations have indicated a relation between

the velocity width of the metal absorption lines and DLA nietal-
licity (Ledoux et al. 2006), which has been reproduced by nu-
merical simulations (Pontzen et al. 2008). In one DLA towards
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Q0458-020, the velocity difference between the absorption lines
and the Lya emissicn line seen in the DLA trough is consistent
with a rotating disc (Heinmiiller et al. 2006). In most cases, no
Lyea emission lines are found in the DLA trough, so whether the
star formation activity and supernovae that produce the metals
occur in situ {Wolfe et al. 2004} at the time of the spectroscopic
observation of the DLA, still has to be verified observationally.
High redshift DLA systems might also be affected by galactic
winds that remove the neutral gas from the galaxies in compe-
tition with accretion from the intergalactic medium {Bond et al.
2001; Prochaska & Wolfe 2009; Tescari et al. 2009). Combining
measurements of star formation rates (SFRs) and impact param-
eters for the galaxies with metallicities and velocities determined
from the absorption lines, is needed in order to disentangle these
effects.

In contrast to LBGs, the galaxy counterparts of DLAs are se-
lected independently of their luminosities. To date ~1000 DLA
systems are known from the SDSS spectra” (Prochaska et al.
2005; Noterdacme et al. 2009). Yet, despite intense observa-
tional efforts in the past couple of decades, only four z > 2
DLA galaxies have been found in emission (Mplier et al. 2002,
2004). The main difficulty is detecting the galaxies against the
glare of the bright background QSO, where the continuum emis-
sion from the galaxies may be 10 magnitudes fainter than the
background source. High resolution images from the HST have
revealed faint (Hap ~ 25) objects typically 1-2” in projec-
tion from the QSOs studied (Warren et al. 2001), but without
redshift information, it is not known whether these are the
galaxy counterparts to the DLAs. Other techniques exploit the
total absorption of the QSO emission at the wavelength of Lya
in the DLA. If the absorbing galaxies are forming stars, they
should be detectable as Lya emitters and through the UV con-
‘tinuum emission from their young stellar populations. Narrow
band images have provided a few detections of Lya emission
(Smith et al. 1989; Wolfe ct al. 1992; Mpller & Warren 1993)
as well as a few upper limits (Grove et al. 2009) close to the
sight lines of QSOs. Some candidate Lye emitters are found

at the redshift of the DLAs with integral field spectroscopy

(Christensen et al. 2007), while strong limits on the Lya flux
from DLA galaxies have been obtained with Fabry-Perot images
(Kulkarni et al. 2006), DLA galaxiesare fainter and have smaller
- SFRs than typical LBGs (Fynbo et al. 1999; Colbert & Malkan
2002; Wolfe & Chen 2006; Fynbo et al. 2008). Very deep spec-
troscopic observations of Lya emission from candidate DLA
galaxies gives typical SFRs of a few tenths of solar masses per
year where the Lyo emission can be extended over a few tens of
kpc (Rauch et al. 2008). The DLA galaxies are therefore chal-
lenging to detect even with the largest telescopes.

Another method to detect the galaxies in emission takes ad-
vantage of sight lines with multiple intervening strong absorbers.
If the highest redshift absorber has a hydrogen column den-
sity much larger than 10'7 cm™2, defining a Lyman limit system
(LLS), all the flux from the QSO bluewards of the Lyman break
(A = 912(1+2) A) is absorbed. This idea was originally exploited
in the search for high redshift galaxies towards luminous QSOs
" (Steidel & Hamilton 1992). If the sight line has a lower redshift
absorber, the emission from its associated galaxy will be visible
even directly in front of the QSO, or at a-very smail impact pa-
rameter. O'Meara et al. (2006) observed strong Mg n absorbers
at z ~ 2 seen in QSO spectra which had higher redshift LLS,
and found two bright L* galaxies at projected distances of 12-16
kpc 1o the two QSOs, Several studies have aimed to identify the
host galaxies of strong Mg u systems, mostly at lower redshifts
z < 1. The presence of galaxies respensible for absorption lines

at impact parameters of 20-40 kpc is used to argue for starburst
driven winds (Nestor et al. 2007; Bouché et al. 2007}, but such
winds are not necessary in a model where the extended gaseous
halos follow a Holmberg relation (Steidel 1995; Kacprzak et al.
2008; Chen & Tinker 2008).

Gamma-ray burst (GRB) afterglows have recently proven to
be of similar use as QSOs for the study of intervening absorp-
tion systems. GRBs have the advantage that the afterglows fade
away providing a clear line of sight for the absorbing galaxies. In
a several cases, galaxies which are possibly responsible for in-
tervening strong Mgn absorption lines have been found within
an impact parameter of ~10 kpc from the line of sight to the
afterglow (Jakobsson et al. 2004; Chen et al. 2009; Pollack et al.
2009). These intervening galaxies have luminosities in the range
0.1-1 L. The discrepancy between the impact parameters and
luminosities found for galaxy counterparts of QSO— and GRB
Mg it absorbers could suggest that bright background QSOs pre-
vent us from detecting potentially fainter galaxies closer to their
[ines of sight. ' :

In this paper we exploit the absorption of the UV light of
two high redshift QSOs that have multiple intervening absorp-
tion systems in their spectra. The observations in the two fields
reach an unprecedented depth with a detectiorr limit of 0.03L*
in the U band. This allows us to put strong constraints on the
SFRs directly in the QSO lines of sight. Throughout the papet,
we assume a flat cosmology with Oy = 0.3, Q4 = 0.7 and
Hy=72kms™" Mpc™'.

2. Observations
2.1. Sample selection

While Lyman limit systems with Hi column densities of
10" cm=2 are optically thick bluewards of the Lyman limit,
some of the background emission is transmitied, and only at

-higher column densities where the optical depth is sufficient

(N(H1D> 10" cm™?) will the blue wavelengths be completely

-absorbed. A QSO with a DLA system at z > 3.39 will have all

its emission absorbed in the U/ band. An intervening galaxy with
a redshift in the range 1.7 < z < 2.3 will have a Lye emis-
sion line in the U band provided it is forming stars. Meanwhile,
the faint emission will be observable from the ground and its
emission properties will be completely unaffected by the bright
background QSO. This effective approach to locate the galax-
ies responsible for intervening strong absorption lines (includ-
ing DL As), near bright QSOs is demonstrated in O’ Meara et al.
(2006). ' ' '

To find such configurations, we systematically searched the
Stoan Digital Sky Survey spectra of about 2000 QSOs for z >
3.5 DLAs in the data release 5 (Schneider et al. 2007). To ensure
that no flux was present from the QSO and that the Lya emission
line was well within the transmission function of the U/ band,

- the redshift criteria were chosen to be conservative. Because the

QS0 emission around the Lye line of lower redshift galaxies is
completely absorbed it is not possible to determine the hydrogen
column density. Instead we used the strong Mgt 142796, 2803
doublet as a proxy for selecting DLAs. These strong lines are
easy to identify in QSO spectra, and can be used to identify
low redshift DL.As where only few have measured hydrogen
column densities (Rao & Turnshek 2000; Rao et al. 2006). It is
not known if strong Mgn absorbers are identical to DLAs; ab-
sorbers with Mg u equivalent widths larger than 0.6 A and lines
spread over more than 300 km s~! only have a probability of
~50% of being DLAs (Ellison et al. 2009). SDSS Spectra with
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at least one high redshift DLA system were investigated further
to find Mg 442796,2803 absorption lines with a rest frame
equivalent width (W) larger than 0.6 A at 1.75 < 7 < 2.2,
where the redshift limits ensure that the associated Lya emis-
sion line fall within the FORS U band. These criteria were met
by two equatorial QSOs (SDSS J110855+120953 at 7 = 3.671
and SDSS 7140850+020522 at z = 4.008) which could be ob-
served by the VLT. Hereafter, we shall refer to these two Q50s
as Q1108, and Q1408. The SDSS spectra of the two QSOs are
shown in Fig. 1, By coincidence both targets had two intervening
DLAs in addition to the strong Mgu system, which effectively
absorb all of the QSO emission immediately bluewards of the
redshifted Lyman limit break.

In each spectrum, the lower redshift absorption system is
detected by several metal absorption lines in addition to the
Mg 112796,2803 doublet. Table 1 lists the properties of the ab-
sorption systems. The high W, measured for the metal lines sug-
gest that the strong metal absorption systems are possibly DLAs.
At WME¥52 o 0 6 A, combined with a criterion for the fraction
WMB MR Fenda600 & 5 nore than 50% of the systems are
DLAs (Rao et al. 2006). This is consistent with the analysis of
the Mgu absorption line velocity spread discussed in Sect, 5.1.

2.2. Photometry

The two fields were observed with the blue sensitive CCD on
VLT/FORS! taking advantage of the high transmission of a new
U filter (U-high), which transmits almost 90% at its peak sensi-
tivity around 3800 A. We obtained very deep observations in the
U band (4.6 and 5.4 hours on target, respectively, divided into
Jittered exposures of 980 s), with shorter {450 s) R band obser-
vations for both fields. The R band images helped to pinpoint
the exact location of the QSO with respect to the nearby galax-
ies. The observations were done in service mode between March
-6 and 9, 2008 under photometric conditions and with seeing con-
ditions between 076 and 1”. _

The data were reduced with standard procedures, subtracting
an average bias frame, and flat fielding using twilight sky frames.
The images were registered and combined to reject bad pixels
and cosmic ray hits. To optimise the depth of the images in the
U band, two of the 16 frames of Q1408 were rejected due to poor
seeing. The FWHM measured from stars in the fields is 0’8 and
0”9 in the R and U band, respectively. Both U band images do
not show any residual emission from the QSOs. The full field of
view of FORS] is 68x6!8, but here we focus on the immediate
regions around the QSOs, as shown in Fig. 2. The images are
30" on a side with orientation north up and east left.

Instrumental zero points were estimated from observations
of standard stars in the ficld Rubin 149 obtained on the same
nights as the science observations. Transformations from instru-
mental magnitudes to Vega magnitudes were calculated using
IRAF-PHOTCAL. The transformation equations from the instru-.
mental to Vega magnitudes included an extinction coeflicient
appropriate for Paranal (Patat 2003). A potential inclusion of a
colour term was consistenit with zero to within the uncertainties,
so this term was neglected. Magnitude uncertainties were prop-
agated through the equations. Aperture photometry showed that
within a 1" radial aperture, the 30 significance detection limit
was Uvega=27.3 mag for a point source in both fields, while the
3o significance limit in the R band was shallower: 26.4 mag and
26.5 mag (Vega) for Q1108, and Q1408, respectively. The mag-
nitudes were corrected for Galactic extinction (Schiegel et al.
1998). Transformations from the Vega to AB magnitudes were

smooth U

Fig.2. R and U band images of Q1108 shown the lefi column,
and for Q1408 in the right: In the / bands the emission from the
QSO0s have been completely absorbed. The images are 30" on
a side with the orientation north up and east left. Objects within
10" from the QSOs lines of sight are Iabeled with numbers and
the photometry of these is listed in Table 2. The bottom row
shows smoothed version of the U/ band images, with a “+’ sign
indicating the location of the QSO. Only in the case of Q1408
do we detect an extended object close to the line of sight of the
QSO0, which is otherwise not detectable in the unsmoothed {/
band. ' '

calculated from the filter transmission curve and the spectrum of
Vega (Fukugita et al. 1995). For the FORS| filters we calculated
Uag = Uvgea +0.66 and Rap = Ryega +0.18 mag. We use the AB
magnitudes unless otherwise stated.

Since the U band images were the deepest they were used
primarily to detect objects. The locations were cross checked
with object detection in the R band to avoid missing any U/ band
dropout.

2.3. High resolution spectra

In addition to the imaging data we took advantage of one 4200 s
integration of Q1108 with VLT4+UVES obtained as a part of
another observing pregramme (ID 080.A-0482, PI. Sebastian
Lopez). The data were used to study the velocity widths of the
strong Mg i absorption lines as described in Sect. 5.1.
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Fig.1. Sloan spectra of the two quasars. In each quasar spectrum, two DLAs (at zpLa = 3.5454 and 3.3963 for
SDSS 1110855.46+120953.3, upper panel, and zpra = 3.9138 and 3,7767 for SDSS F140850. 91+020522 7, lower panel) completely
absorb the QSO emission bluewards of 4200 A Two lower redshift systems are identified through their strong metal absorption lines,
Both panels indicate the transmission curve of the U/ band, which lies bluewards of the absorption cutoffs. Spectra of Lyman break
galaxies with Lyaf in emission (Shapley et al. 2003) at the redshifts of the Mg it absorption systems are mdlcated in the two plots.
Their Ly emission lines fall within the U band in both cases.

Q50 ZDLA ZLA2 | ZMen wre 1:42500 .W:w ‘g:“m% wM g:,{zssz

: (A) (A) (A)
Qli0g: 3671 3.5454 3.3963 | 1.8692 1.23 2.46 0.61
Q1408 4.008 3.9138 37767 | 1.9816 0.97 1.89

Table 1. Absorption line systems in the two Q8O spectra. The metal fine rest frame W, are measured for the lowest redshift systems
in the SDSS spectrum for Q1408, and the UVES data for Q1108: The SDSS spectra give values consxstent within the uncertainties
with the UVES data. The SDSS spectrum of Q1408 is 100 noisy to identify the Mg1 line.

to the vacuum-heliocentric rest frame. The_signa]-tounoisé ratio
in the reduced spectrum was measured to be 15-20 per pixel.

Both the blue and red UVES spectrograph arms were used si-
multaneously with standard dichroic settings, with central wave-
length of 437 and 860 nm. The resulting wavelength coverage is
305 to 1042 nm with gaps at 575-583 nm and 852--866 nm. The
CCD pixels were binned by a factor of 2 X 2 and the slit width
adjusted to 1", This yielded a resolving power of 48 000 under
the seeing conditions of 1",

3. Observational results

3.1. Nearby galaxies and colours

The data were reduced using the ESO pipeline system, which
allowed for an accurate extraction of the object spectrum, while
 subtracting the sky spectrum and removing cosmic ray hits and
CCD defects at the same time, Wavelengths were finally shifted

The goal of this study is to detect objects located directly along
the QSO line of sight. In both fields the closest objects lie at
a separation of ~3" from the QSO. If either of these galax-
ies are responsible for the strong absorption line system seen
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in the QSO spectra, the projected separation is ~40 kpc at the
redshift of the absorbers. No other nearby objects are found at
the 3o significance level (corresponding to 0.03 L*). Atz = 2
a luminous L* galaxy has an absolute magnitude of Uig=
21.9 mag (Gabasch et al. 2004), and an observed magnitude of
Uap = 24.0 mag in the adopted cosmology. The numbered ob-
jects in Fig. 2 mark all galaxies that are located within 10" of
the QSO; most of these objects are fainter than U = 24 mag. The
photometry of these galaxies is listed in Table 2, -

We investigate whether the colours are similar to other galax-
ies detected in galaxy surveys. For comparison we use photome-
try of galaxies from the GOODS-MUSIC catalog (Grazian et al.
2006) where multiband photometry allows an accurate determi-
nation of the photometric redshift. To estimate the Rag magni-
tude of the GOODS galaxies, we linearly interpolate the flux be-
tween the measured FoO6W and F775W bands to calculate the
flux at 6440 A. We are mainly interested in the observed colours
of galaxies around z = 2, where the HST bands correspond to
restframes 2000 and 2580 A, respectively. Between wavelengths
15002800 A galaxy spectra are mostly flat when measured in
frequency units, f, (Kennicutt 1998), so a simple interpolation
to calculate the R band magnitude is well justified. The trans-
mission curves for the VIMOS U band used in the GOODS-
MUSIC catalog is different from the FORSI high transmission
U/ filter. We calculate a transformation between the two systems:
Urors1 = Uvimos + 0.04 mag,

A colour-magnitude diagram of ~1000 galaxies with photo-
metric redshifts between 1.8 and 2.3 is shown as a grey scale
image in Fig. 3. Galaxies detected in the two QSO fields with
a signal-to-noise ratio > 3 are shown as small symbols, and the
objects detected within 10" are shown as larger symbols with
error bars. Due to our shailower R band observations relative to
the GOODS observations, objects in the lower right hand corner
are undetected in our observations. The colours of the GOODS

galaxies span a narrower range than for the galaxies in the two’

QSO fields, where there is an excess of galaxies with colours
around &/~ R > 1.5.If no photometric redshift selection is made
for the GOOQDS galaxies, a wider range of colours are found, and
the two colour distributions are consistent.

The typical colour of an irregular galaxy, calculated from
template spectra (Kinney et al. 1996), and redshifted oz = 2 is
shown as a diamond, where its U band magnitude correspend to
an L' galaxy. By creating artificial spectra of metal poor, young
galaxies (Bruzual & Charlot 2003) with an additional intrinsic
extinction of Ay=0.5 mag, we estimate the colour and magni-
tude change. We also calculate the colour and magnitude change
if the galaxies have strong Lye emission with a rest frame equiv-
alent width of 100 A. The arrows in Fig. 3 show the respective
changes which are minor. More evolved galaxies have redder
colours (& ~ R > 3) independently of the metallicity and the
initial mass function of the galaxy templates. This implies that

the entire range of colours in Fig. 3 can be obtained for high

redshift galaxies. Specifically, the red colour of object no. 4b in
the Q1408 field is consistent with an evolved galaxy at z =~ 2
with an age greater than 700 Myr for the dominant population of
stars. In the Q1408 field there are several red galaxies present at
impact parameters larger than 10"’ from the QSO line of sight.
In the upper right hand panel of Fig. 2, the R band image of
Q1408, a large and bright galaxy is partly visible (marked ‘G"y
in the image. This galaxy has the morphology and colours of a
low redshift elliptical, and there are several fainter galaxies with
the same colours around it. It is likely that object no. 4b is part
of a lower redshift group environment. o
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Fig. 3. Colour-magnitude diagram of the objects in the two fields
(small plus signs). The grey scale image shows the distribution
of ~ 1000 galaxies with photometric redshifts 1.8 < Zphot < 2.3
from the GOODS-MUSIC survey. The large crosses with error
bars- mark the galaxies near to the QSO lines of sight and the
numbers refer to those in Table 2 (red symbols for Q1408, and
purple for Q1108). The large black diamond symbol shows the
colour of ar L” starburst galaxy at z = 2. See the online edition
of the journal for a colour version of this figure.

Although there are no clear correlations between the U — R
colour and redshift, objects with I/ — R < 0.5 are more likely to
lie at z > 0.9, 52% of the GOODS galaxies fulfill these criteria,

‘while only 20% of galaxies at z < 0.9 have such blue colours.

However, the single U - R colour is insufficient to make an exact
redshift estimate, and not good at all to select objects at 7 ~ 2.
Additional observations in the V band would be useful to apply
the BM/BX colour criterion to select galaxies with 1.4 < z < 2
{Adelberger et al. 2004).

Objects no. 2b, 3b and 6b in the Q1408 field and no. 4a in the
Q1108 field have the bluest colours. Given their non-detection in
the R band, several of the objects could potentially be located at
higher redshifts with very blue colours.

3.2. Extended objects

To check for the presence of extended low surface brightness
objects closer to the lines of sight of the QSOs, the / band im-
ages are convolved with Gaussian point spread functions with
a FWHM of 175 and 2, respectively. While the 3¢ detection
limit is {/ag = 28.0 for a point source, the smoothed images
have a deeper 3¢~ detection limit of Ung = 28.5 within a 1”5
radial aperture for the two fields. No objects are detected close
to the line of sight of the QSO in the field of Qi 108. Objects'
4a and 5a in the Q1108 field have a separation of 2, and ap-
pear merged into one elongated object in the smoothed image,
Furthermore there is an extension of emission to the west of ob-
ject no. 4a which is not directly visible in the original image.
This extension reaches a minimum impact parameter of 378 di-
rectly south of the QSO with a size of 15x3” and has a magni-
tude of Uap = 27.4 + 0.1. If the object is at z ~ 2, the projected
distance is 31 kpc.”~ ' '



6 L. Christensen et al.: Uncovering strong Mg 11 absorbing galaxies

Object No. offset (") b("y U(mag) R (mag) Lyllyatz=2
Q1108
la 0.7TE 84N 84 2583x0.10 2541x0.18 0.10
2a 41W 24N 4.7 2706028 >264 0.03
3a 64W 348 72 2266001 2223x0.02 1.87
4z 34E 488 5.8 2588x0.11 >26.4 0.10
5a 53E 528 74 2675028 >264 0.03
Q1408
1b 00E 64N 64 >273 25.82+0.25 <0.03
2b I1OW 548 5.5 24.64£0.04 243811010 031

. 3b 69E 508 8.5 25.75+0:09 25644020 0.1
4b 82E 648 104 25.55+£0.07 22.25+£0.02 0.13
3b 33w 828 8.9 2553+0.08 24.79+0.10 0.13
6b 56W 778 9.5  26.03x0.12 26411040 0.08
7b 88W 178 8.9 26.73x021 24.88+0.10 0.04
8b 0.7E 1038 0.8 2692x0.10 -~ 0.04

Table 2, Vega magnitudes of objects identified within ~10” from the QSO lines of sight, with the observed offsets in RA and DEC
(in arcsec), and projected impact parameter (in arcsec). Objects near Q1108 are in the upper 5 rows, and near Q1408 in the bottom
8 rows. The magnitudes are corrected for Galactic extinction. The last column gives the luminosity fraction relative to a U* pgalaxy
at 7 = 2, which has an apparent magnitude U4 = 24. The uncertainties are 0.01 for this fraction.

In the Q1408 field, a faint object (Upap ~ 27.6 + 0.1 mag
within a radial aperture of 175) is detected at an offset of 078 to
the sonth-east of the QSO as displayed in Fig. 2, and labeled as
object no. 8b. At z = 2 the projected distance is 7 kpc. The object
appears elongated with a size of about 275%2" in the frame with
a Gaussian convolution width of 175, To estimate whether a faint
object is present also in the R band, the QSO is subiracted us-
ing the brighter field stars as PSF reference. No additional point
sources were visible after the subtraction. To estimate the detec-
tion limit of a resolved object against the glare of the brighter
QSO, we add artificial objects nearby the bright QSO, and then
subtract the PSF to recover the artificial object. These experi-
ments show that we can recover an object with a FWHAM of 175
and R = 25 mag at a distance of 08 by PSF subtraction. This
places a rough upper limit on the colour: U — R < 2.8 for the
abject no. 8b.

3.3. High redshift DLA host galaxies?

In the previous sections we investigated whether some of the
spatially nearby galaxies are the hosts of the z = 2 Mgn ab-
sorption systems, but a related question is whether some of the
galaxies could be the hosts of the z > 3 DLA systems.

For both fields, the two high redshift DLAs absorb all emis-
sion immediately bluewards of the Lyman break. This suggests
that the objects detected in the U/ band images are not likely to be
the host galaxies of the z > 3 DLA systems because no UV emis-
sion bluewards of the Lyman limit break should be able to escape
the cloud, at least along the QSOs line of sight. Only object no.
1b in Q1408 is detected in the R band but not in the U band, and
this could potentially be the host of one of the DLAs. However,
the impact parameter is quite large (44 kpc at z = 3.8) compared
to a typical value of ~10 kpc found for the few confirmed DLA
galaxies at z > 2 (Mgller et al. 2002; Weatherley et al. 2005).
Numerical models also predict small impact parameters of the
order or less than 10 kpc for DLA - ‘systems (Nagaminé et al.
2007; Pontzen et al. 2008). However, little is currently. known
about the extension and morphology of gaseous disks a.round
high redshift galaxies from observations.

Even though no UV photons bluewards of the Lyman limit

can escape the DLA clouds along the line-of-sight, they can

escape along other directions with a smaller optical depth. In

“such a special gas geometry, the emission from the DLA host

galaxies can be detected in both the U and the R bands. If the
escape fraction of the galaxies is substantial, the Lyman con-
tinuum emission could be still observed, and in the images the
galaxy would be visible at some distance from the QSO lines of
sight. Assuming an escape fraction fiseo/ fopo = 2.9-4.5 as ob-

served for two Lyman break galaxies (Shapley et al. 2006), we

can calculate the rest frame flux ratio which corresponds to a
colour (U = R)ap ~ 2.2. Objects no. 4b and 7b.in the Q1408
field have colours consistent with being at a redshift of z > 3,
but the colours are also consistent with lower redshift evolved
galaxies. With R = 22.25 mag for object no. 4b, it would have a
luminosity of 7L* if it were at z = 3.8 relative to an R* = -23.0
galaxy {Gabasch et al. 2006) while 7b would have a luminosity
of 0.7L*. Considering that such bright objects are rare, it is more
likely that object no. 4b has a lower redshift, and possibly is a
member of a group as discussed above. In addition, object no.
7b would have an impact parameter of 65 kpc at z = 3.8. Since
the objects are faint for follow up spectrascopy, near-IR images

-of the field can be used instead to investigate the spectral energy

distribution and to determine the photometric redshift. Before
such observations are made we cannot claim the detection of the
hosts of the DLAs.

4. SFR limits
4.1. SFRs from the UV continuum

The limiting magnitude of Uap = 28.0 corresponds to a SFR of
0.6 Mo yr~! for a galaxy at z = 2. At the redshift of the Mgn
absorbers, the U/ band measures the emission at 1200-1400 A in
the rest frame of the absorbers. To estimate the SFR in the UV
region, we extrapolate calibrations from other studies.

The conventional conversion from a UV flux to the SFR

(Kennicutt 1998) is valid from 1500-2800 A, where spectra

of star forming galaxies are flat. Bluewards of 1500 A the
flux decreases, so we analyse template spectra to estimate the
SER given the U band flux. We use the template spectra from
Bruzual & Charlot (2003) of instantaneous star burst popula-
tions with ages <100 Myr and a Salpeter initial mass function.
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age 0.02Z, 02Z, 04Z; 174,
10 Myr LI 1.3 1.4 1.5
50 Myr L7 1.9 23 2.9

100 Myr 23 2.9 3.7 55
200 Myr 3.5 3.1 7.3 14.9

Table 3, Conversion factor A for Eq. (1) calculated for different
galaxy template ages and metallicities relative to the solar value,
Ze = 0.02.

Galaxy template spectra are created with the observed U band
magnitude at the redshift of the absorber. The template fiux blue-
wards of 1215A is reduced to reflect that 15% of the flux is ab-
sorbed in the Ly forest at z = 2 (Dall’Aglio et al. 2009). No
Lya emission is present in the template spectrum. From this tem-
plate the flux at the rest frame 1500-2800 A is used to calculate
the SFR using the standard conversion (Kennicutt 1998), which
has an intrinsic scatter of ~30%.

The SFR conversion depends also on the age and metal-
licity of the template for which we have to select appropriate
values. Since strong Mgn absorbers have about 50% chance
of being DLAs (Rao et al. 2006; Eilison et al. 2009), we use
typical low metallicities measured for the DLA population
{(Wolfe et al. 2005). Models of chemical evolutions of the DLAs
at high redshifts show that they are typically a few 100 Myr
old (Dessauges-Zavadsky et al. 2004). A notable exception is the

DLA towards Q B2230+02, which has a relatively high metallic~ -

ity and an age of 3 Gyr (Dessauges-Zavadsky et al. 2007). The
conversion from luminosity to SFR is given by

SFR (Mg yr™') = Ax 1075 L, (erg s Hz™"), (D)

where L, is the luminosity measured around 1200 A in the rest
frame of the galaxy. For a 100 Myr, 0.2 solar metallicity tem-
plate, we calculate A = 2.9 in Eq. (1). Since the factor 4 de-
pends on the metallicities and ages of the galaxies, we derive
the conversion factor for the SFR using a series of templates of
varying ages and metallicities (see Table 3) corresponding to the
available template metallicities in Bruzual & Charlot (2003),

If the Ly emission line is very strong we over. estimate
the SFR with this procedure, since a pure Lye line indicates a
smaller SFR as described in Sect. 4.2. Hence the SFRs that we
give are considered to be conservative.

11 is possible that the galaxies responsible for the, strong ab-
sorption systems are extended low surface brightness objects.
‘We compute the apparent magnitude and UV flux for an object
detected at the 3o significance level as a function of radius. To
calculate the limiting magnitude for a signal-to-noise ratio of
S/N=3 we use myy = zp — 2.5 log(S/N Az /1), where zp is
the FORS zero point measured in magnitudes, np, = (r/0.25)%
is the number of pixels within an aperture radius r (in arcsec),
and 0.25 is the plate scale of the' CCD (“/pixel). o is the stan-
dard deviation of the pixel values measured in the reduced CCD
frame, and ¢ is the integration time measured in seconds. Given

these values, a point source has with a FWHM=1" has a radial

npix = 2, which at z = 2 corresponds to ~4 kpc in the adopted
cosmology. The limiting flux increases with increasing aperture,
so for more extended galaxies the SFR limit is less strong.

With the observations, we can place a strong constraint on
the SFR for an object located directly in the lines of sight of the
QSO0s. Figure 4 shows the limiting SFR for the lines of sight
to the two QSOs as a function of the radial aperture. At large

o

SFR limit (Mg yr™")

0.1 . ] .
1.0 1.5 2.0 2.5
aperture radius {")

3.0

Fig. 4. The limiting SFRs in the two QSO lines of sight (solid
line with the uncertainty represented as the shaded area) con-
verted from the limiting magnitude calculated as a function of
radial apertures. The limits have been calculated from the origi-
nal unsmoothed {7 band images. At z = 2 one arcsec corresponds
to 8.1 kpc in projection. The upper dotted line shows the average
SFR per unit area in DLA galaxies of 1072 Mg yr~! kpc=2 while
the lower dotted line represents a value of 107> Mg, yr™} kpc™2
corresponding to the lower limit in Wolfe et al, (2004).

.apertures of 3”, the SFR limit is within 2 Mp yr™! including

uncertainties. Compared to typical LBGs which have an average
SFR measured from the unobscured UV emission of 8 Mg yr™'
(Erb et al. 2006a), our observations probe high redshift galaxies
which are significantly fainter. Similarly, extended continuum
emission from DLA galaxies is not detected in the Hubble ultra-
deep field (Wolfe & Chen 2006), possibly due to a smaller star
formation efficiency in IDLAS relative to LBGs.

Wolfe et al. {2004, 2008) estimate the SFR surface density
of DLA galaxies to lie in the range 1072 — 1073 Mg, yr™! kpc™2
depending on the state of the neutral gas. These values are rep-
resented by the dotted lines in Fig. 4. If the absorbing galaxies
we are looking for in emission are similar to the DLA absorp-
tion systems investigated by Wolfe et al. (2004) we should be
able to detect them if the star formation extends uniformly over
the galaxy discs. Only the weakest star-forming DLA galax-
ies would remain undetected. The non detections indicate that
galaxies with extended star formation, specifically at the high
rate of 1072 Mgyr~! kpc~2, are unlikely to be present in the two
QSO lines of sight. Alternatively, a high SFR density in a small
dwarf galaxy system with a radius <4 kpc has a SFR below the
detection limit. '

The most nearby point source objects (no. 2a,2b in the two
fields) have SFR=0.5 M, yr™! for Q1108 and 4.9 Mg yr~! for
Q1408, respectively, if they are the absorbing galaxies. The ex-
tended object no. 8b near Q1408 has SFR=0.6 Mg yr™!. '

4.2. SFRAs from Lya emission

In the hypothetical case that the U/ band flux comes entirely
from a Lye emission line from the galaxies at z = 2, the line
flux for the objéct no. 2a in Q1108 is 2.5x107 " erg cm™2 57,
For Q1408 the line flux is 10.0x107" erg em™ s~' and

- 1.3x107"7 erg em™2 s for objects no. 2b and 8b, respectively.

This in turns corresponds to a SFR of 0.5 M, yr~! for object no.
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2a in the Q1108 field and 2.3 Mg yr~! and 0.3 M, yr~! for ob-
Jects no, 2b and 8b near Q1408. To calculate these flux densities,
we use the case B recombination scenario (Osterbrock 1989), a
flux ratio of Lye/Ha = 10, and the conversion between Ho lu-
minosity and SFR from Kennicutt {1998). This last assumption
of a pure Lye emission line object is not justified in the case
of Q1408, because the continuum emission is detected in the R
band, but it serves the purpose of calculating the SFR for com-
parison to that estimated from the UV continuum.

The Lya photons are effectively quenched in the presence
of dust, so the above SFR are strict lower limits. Since the SFR
estimated from the UV is higher than estimated from the Lya
flux by a factor of 3, the unobscured SFR may be somewhere
between these values.

We note that the estimated Lye flux densities and lurhinosi-
ties are in the same range as those measured for the few detec-
tions of Lye emission from DLA galaxies (Mgller et al. 2004:
Weatherley et al. 20035, and references therein), This is probably
not a coincidence, but likely reflects that the searches for emis-
sion from DLA galaxies are carried out to the detection limit of
currently available instuments. :

5. Strong Mg 1 systems
5.1. Velocity spreads

The UVES data of Q1108 shows a wealth of absorption lines and
a detailed analysis will be presented elsewhere, The systemic
redshift is found to be z = 1.8692 from narrow metal absorption
lines of Mg A2852 and the Fe u lines. The Mgu- A42796,2803
line profiles are complex with several components spread over a
velocity of Av = 308 km s, as typically seen for strong Mgn
absorbers (Nestor et al. 2007). The same spread is seen in the
Civ 41549 doublet. The bulk of the Mgn absorption is spread
over a smaller velocity range of ~150 km s™' surrounded by
weaker satellites at larger velocities. This places the absorber
among the strong, but not extremely strong Mgu absorbers. A
smaller velocity spread of the dominant absorption components
is seen from other non saturated lines such as the Fen 42374 line,
as demonstrated in Fig. 5. The velocity spread of the Mg u line is
twice that suggested by the correlation with the equivalent width
Av (kms™") = 70 (kms™ A1) x WA (A) (Murphy et al.
2007). Using the Mgn absorption line velocity spread to calcu-
late the D-index (Ellison 2006) gives D = W,/Av x 1000 = 8.0.
For values of D > 7 the probability that the absorber is a DLA is
50--55% (Ellison et al. 2009),

To compare with previous studies (Ledoux et al. 2006), we
measure the velocity spread of the Fenr 42374 line which sat-
isfies the criterion that the maximum residual emission lies be-

tween 0.1 and 0.6 times the continuum level. From the central

wavelength defined by the redshift of the system, we measure,

the velocity range over which 30% of the apparent optical depth-

{Savage & Sembach 1991) is seen. We find AVyg = 79 km s~} as
demonstrated in Fig. 5. Unsaturated lines typically have smaller
velocity spreads relative to the Mgn lines, which may be com-
posed of more components that contribute to the total line width
due to their stronger transition.

5.2. Metallicities

Since the Lya absorption lines corresponding to the Mg sys-
tems lie in the absorbed parts of the QSO spectra, we cannot
determine the metallicities as usually done for strong absorption
systems. In the absence of an exact metallicity measurement for
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Fig. 5. The bottom panel shows the velocity profile of Feun
A2374 from the UVES data, and the dotted line shows the er-
ror spectrum. The upper panel demonstrates the integrated, nor-
malised, apparent optical depth, and the vertical dashed lines in
the spectrum indicate the wavelengths within which 90% of the
absorption is seen.

the Mg u absorbers, we assume that the absorbing clouds are ac-
tually DI.As. Consequently, some derivations in this section are
only valid if the objects are DLAs, for which the probability is
50%. In case the Mgn absorbers are sub-DLAs we point out the
conclusions for this category. We use calibrations and scaling
relations found for DLAs and sub-DLAs in the literature to de-
rive the metallicities, and use the conventional notation of the
metallicity [M/H] = log[ N(M)/N(H)] - log[ N(M)/N(H)]».

A relation between the metallicity and velocity spread
as measured by the AV, parameter has been found for
DLAs around z = 2 (Ledoux etal. 2006). Using this rela-
tion and the spread measured from the UVES data of Q1108,
the metallicity of the galaxy is expected to be [M/H] = -
1.4£0.4. A similar correlation exists for sub-DLAs, for which

-Dessauges-Zavadsky et al. (2009) suggest a [Fe/H] metailicity

which is larger by 0.4-0.6 dex for a given velocity spread. Using
[Zn/H] as a tracer of the sub-DLA metallicities, Meiring et al.
(2009) find no correlation with velocity, but find systematically
larger values for sub-DLAs relative to DLAs,

Another calibration uses the measured values of WSiutis26
which correlates with the metallicity in high redshift DLAs
(Prochaska et al. 2008). To use this relation for the Mgn ab-
sorber towards Q1108 we néed WS'I326 byt that line is
strongly contaminated by other absorption lines in the Lya forest
of the QSO. Instead we use the observed relation which suggests
that the widths of the lines roughly scale inversely with their
wavelengths: W8!"27%/wSindis® = 3 (prochaska et al, 2008).
These relations suggest a metallicity {M/H] = —1.0+0.1 for the
Mg absorber in agreement with the previous metallicity esti-
mate,

These low metallicities are typical for high redshift DLAs
(Pettini et al. 1994; Prochaska et al. 2003). Observations have
indicated that sub-DLAs have higher metallicities on the av-
erage (Péroux etal. 2003; Péroux etal. 2008; Meiring et al.
2009), while an investigation of the redshift dependence demon-
strated that this is only true at lower redshifts (z < 1.7)
(Dessauges-Zavadsky et al. 2009).
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5.3. Expected galaxy magnitudes

We can estimate the magnitude for low metallicity galaxies
if a luminosity metallicity relation exists for DLA galaxies
(Ledoux et al. 2006), again assuming that the clouds are DLAs.
A DLA galaxy with 10% solar metallicity is expected to be faint:
R ~ 26.1 mag or 0.06L" at z = 2 according to the metallicity—
luminosity relation in Ledoux et al. (2006). Such a relation is
vaiid provided the absorption lines velocity spread is used as
a proxy for the dark matter halo circular velocity, and there
is a direct relation between the halo mass and a galaxy lumi-
nosity {Haehnelt et al. 2000). In the case of a lower metallicity
([M/H]}=-1.8) the galaxy would be even fainter: R ~ 30 mag.
Extrapolating this relation to derive magnitudes for sub-DLAs
with metallicities as large as [M/H]=-0.4 gives R = 23.1. As
described in Sect. 3.1, the I/ — R colour of galaxies atz = 2
depends on the age of the most recent dominant starburst, but
generally blue colours are expected for young galaxies. Thus,
the expected magnitude is U ~ 26.6 in the 10% solar metallicity
case. Our survey is deeper than this limit, so we would be able to
detect the continuum emission from the Mgn galaxies. The non
detection of emission within 2 of line of sight is consistent with
the very low metallicity case. If the cloud is a sub-DLA instead,
a brighter host galaxy is possible, but since no bright galaxies
are found close to the QS0 lines of sight, it would have to have
a large impact parameter.

Using instead the observed luminosity-metallicity rela-
tion either at low (Tremonti et al. 2004) or at higher redshift
(Erb et al. 2006a), we rely on extrapolation of the observed re-
lations and metallicities derived from emission line diagnostics.
We assume that metallicities determined from emission and ab-
sorption lines are the same, and that there are no metallicity
gradients. The luminosity metallicity relation in Tremonti et al.
(2004) shifts by 0.35 dex in metallicity relative to the relation for
galaxies at z ~ 2 (Erb et al. 2006a). This relation suggests that a
10% solar metallicity DLA galaxy has U ~ 31 mag, i.e. well be-
low the detection limit of our data, while a 0.4 solar metallicity
sub-DLA has U ~ 28 mag.

For the strong Mgn absorber towards Q1408, we can

only estimate the metallicity from the W:“ 814279 alibration in
Turnshek et al. (2005) and Murphy et al. (2007). This calibra-
tion gives —0.9<{M/H]<-0.7, provided that the cloud is a DLA
system. While higher resolution spectra are needed to investi-
gate the velocity spread, the SDXSS spectra indicate that the Mgn
line of Q1408 has a width that is 20-30% lower than in Q1108
Hence the metallicity could be lower, and the absorbing galaxy
should be fainter than that towards Q1108.

6. Discussion and summary

Using the absorption of background QSO light by intervening
DLAs at z > 3, we look for the galaxies responsible for interven-
ing strong Mg u systems at z = 2 along two lines of sight, The ve-
locity spreads and equivalent widths of the absorption lines indi-
cate that the strong Mg i1 systems are possible DLAs. Very deep
images obtained for these two QSOs reveal no galaxies directly
in the line of sight to a limiting magnitude of Uag = 28.0. The
most nearby objects are located at impact parameters of ~57,
corresponding to about 40 kpc at z =~ 2. While no peint sources
are found close to the lines of sight, we find evidence for the
presence of a more extended structure in a smoothed U band
image of the field of Q1408. This structure has a much smaller
impact parameter of 078 or 7 kpc at z ~ 2. Such extended low.

surface brightness objects would be impossible to detect after
PSF subtraction of the bright background Q50s. '

We consider two possible reasons for the non detections of
nearby point sources. Either the galaxies are too faint, or the im-
pact parameters are large. The first possibility, that the galaxies
are very faint and below the detection limit, is in agreement with
low metallicity absorbers. However, this hypothesis must be jus-
tified based on several assumptions and extrapolations.

Firstly, since the metallicities cannot be measured exactly
because the Lye absorption lines lie in the absorbed part of
the QSO spectra, we have to rely on the correlation between
DLA/sub-DLA metal-line velocity width and metallicity to es-
timate [M/H]. Secondly, we must assume that the objects are
DLAs, and not LLS which generally have larger metallicities
for a given absorption line width. Finally, we must extrapolate
the metallicity luminosity relation observed for DLAs. These as-
sumptions lead to an expected magnitude of the galaxy below the
detection limit.

The closest galaxies to the line of sight of the QS0s are lo-
cated at 40 kpc, They have luminosities of 0.03L* and 0.3L* cor-
responding to SFR of 0.5 and 4.9 Mg, yr™', respectively for the
Q1108 and Q1408 fields assuming that the redshifts are indeed
z = 2. The luminosities are in agreement with Rao et al. (2003),
who found that Mgn absorbers at z < 1 arise in 0.1 L* galax-
ies, but in contrast to the results in O’Meara et al. (2006), who
found brighter galaxies (0.3—1.2L* within 25 kpc) for two differ-
ent fields at z = 2. In comparison, the strong Mg 1 galaxies which
intervene the sight lines to GRBs are of similar luminosities than
in the objects in the two FORS fields, but are typically found
at smaller impact parameters (Pollack et al. 2009). The galax-
ies studied by O"Meara et al. (2006) could, however, be at lower
redshift than the absorption systems. Spectroscopic confirmation
in these four fields including ours would be of great interest.
The SFRs we derive for the two fields are similar to those deter-
mined from spectroscopic observations of the galaxies respon-
sible for strong Mgn systems at lower redshifts (0.8 < z < 1)
{Bouché et al. 2007), but these galaxies are generally found at
smaller impact parameters (20+12 kpc).

While the impact parameters for the two closest objects are |
larger than the size of neutral gas discs in high redshift gas rich
(proto)-galaxies as estimated in simulations (Nagamine et al.
2007), observational results in this area is still very limited. The
kinematics of high redshift DLAs are inconsistent with a large
rotating disc scenario (Zwaan et al. 2008). In order to explain
the larger velocities of high redshift DLAs relative to local Hi
discs, there may be a population of DI As that arise in starburst
winds or from tidal interactions of galaxies, just as hypothe-
sised for strong Mg systems (Bond et al. 2001; Bouché et al.
2007). Clouds with DLA column densities can be located sev-
eral tens of kpc from the galaxy centre as seen from observations
(Ellison et al. 2007) which is also 'supported by simulations of
the halos of massive galaxies at redshifts z = 3 (Pontzen et al.
2008).

In order to invesiigate whether the Mg 11 absorption systems
are associated with the low luminosity galaxies at a considerable
impact parameter, spectroscopic data of the galaxies are neces-
sary, which is challenging due to their faintness. Nevertheless,
the Lye fluxes for pure emission line objects are within the reach
of current spectrographs. Specifically, IFU cbservations are use-
ful in the search for Lye emission lines very near to the QSO
lines of sight, and especially when the objects are extended. Such
observations can simultaneously be used to determine the red-
shifts of the other galaxies within 10" of the line of sight to the
QS80s: '
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L_{ Questions; 90 Points Possible; 70 Points, 77%, Guaranteed Pass)
Given September 12, 2009

Uncovering strong Mg II absorbing galaxies: imaging below the Lyman limit
L. Christensen, P. Noterdaeme, P. Petitjean, C. Ledoux, & J. P. U. Fynbo
(arXiv:0908.3893v1; MS12015 MNRAS)

Please start each question (by number) on a new sheet of paper; write on only one side of the paper, and
staple them together in order of question number when finished. It is strongly suggested that you read the
abstract very carefully. I will also say that the § 1, Introduction, is very helpful,

1. [25 pts] The Lyman break and Lyman Break Technique [Hint: thinking about Figures 1 and 2 may be
helpful}. : -
(a) [10 pts] Consider a redshift z =0 star-bursting galaxy, AGN, or quasar. Explain in your own words
what a Lyman break feature in the spectrum of said galaxy, AGN, or quasar is. Include:.
¢ What element is involved?
* What ionization stage of the element is involved?
Exactly what physical process is occurring that gives rise to the break feature?
At what wavelength does the break oceur?
What overall wavelength range does the feature extend over?

L ]

The Lyman break feature is due to the ionization Jrom the ground state of neutral hydrogen. All photons -
With energies greater than the ionization potential of ground-state neutral hydrogen are capable of tonizing
hydrogen. The energies are E > he/), where X = 912 A. Thus, virtually ali photons with wavelengihs
less than 912 A are removed from the line of sight. The break refers to the rapid drop in or vanishing of
transmitted (detected) fluz below 912 A, For the break to occur, the column density of neutral hydrogen
has to be very high, well above 10173 atoms em=3. .

(b) [ pts] Draw a picture of a spectrum, observed counts versus wavelength, and include a Lyman break.
Be sure that your wavelengths are labeled properly. Label the break and/or the region over which the
break extends. ' -
See Figure 1, attached L _ .
(¢} [10 pts] The Lyman break technique is an imaging method used to find high redshift galaxies, AGN,
or quasars. In your own words, describe how the Lyman break technique is applied in practice. That s,
for example, let’s say you were searching for z = 3 galaxies, AGN, ar quasars. How would you design
and carry out your experiment and what would you look for as the signature of a z = 3 ob ject? Be very
' specific about the wavelength(s) you are targeting for your observations, =
At redshift z = 3, the Lyman break would be shifted to the observed wavelength A = 912(1 + z)=3648 A.
That is, a z = 3 galazy/A GN/QSO surrounded by optically thick neutral hydrogen will have an observed
spectrum such that the fluz below 3648 A is virtually all absorbed due to the ionization of the hydrogen.
The Lyman break technique involues imaging in a filter above the observed bregk wavelength and then
again in a filter below this wavelength, usually the U band. One looks for “U-band drop outs”, ie.,
sources that appear in the redder filter(s) but are below detection levels in the U band filters. The drop
out sources are candidate z = 3 galazies!

2. [12 pts] The authors apply a variation of the Lyman break technique; they are looking for dim high red-
shift galaxies that lie in projection very near to a much brighter background quasar. In §2, Observations,
the authors describe their selection method.

(a) [6 pts] Explain, briefly, the method that the authors employ, including how this exploits the presence
of the Lyman break feature, and why it is powerfully effective for searching for these dim galaxies.
Include in your answer: -




Al

e What critical role the z ~ 3 damped Ly-a’ a.bsorbers (DLAs) play?

e To maximize their search, why did they reqmre DLAs? Why not some other type of absorption
system (what physical quantity is important)?

The authors want to find galazies that may lie in projection very very near to or directly in front of the
quasar. The best way to do this is to try and block out the quasar light af observed wavelengths where the
galazies are expected to be bright. One way to block out the quasar light is to pick quasars having optically
thick neutral hydrogen intervening to them ot z ~ 3. Damped Ly-& absorbers {DLAs) are perfectly suited,
in that they create ¢ Lyman limit with observed wavelength ~ 3648 A. Then, galaxies where the Ly-o
emission is strong for observed wavelengths below this observed break can be seen unobstructed by the
vanished quasar light. Since Ly-a is at 1215 A, then galazies at redshift 1215(1 + z) < 3648, or 2 < 2.0
will have strong emission where the observed quasar light is vanished. DLAs are required because the
authors needed to be certain thot the neutral hydrogen was very optically thick to ensure complete and
total absorption of the quasar light below the observed break wavelength. The important physical quantity
is the neutral hydrogen column density, or optical depth.

{b) [6 pts] Following the selection of the quasars, the authox/s have data that prov1des for them the
redshifts of the galaxies they are trying to image.

e What are these data?
o How many galaxies are they trying to find?
s What are the redshifts of these galaxies?

It is well established that Mg IT absorption in quasar spectro selects gas along the quasar line of sight
that is associated with a galary. Thus, given the redshift of a Mg II absorber, one should expect to find a
galazy at that same redshift in the projected prozimity to the quasar. There are fwo z >~ 2 My If absorbers
in the selected sample (by design of the empemment} See Table 1 of the paper. In Q1108, there is a Mg
IT absorber at z = 1.869, and in Q1408, there is a Mg II absorber ot z = 1.9816. The authors are hoping
to find the galaxies assaczated with these two Mg II absorbers.

. [24 pts] Redshifted Absorption and Velocities

(8) [4 pts] Say you known there is a Mg Il absorber at z == 1.5. If the rest—frame wavelength of Mg Il is
2796 A, at what wavelength would you expect to observe the Mg II A2796 absorption profile?

The observed wavelength is Aobs = Arest - (1 - z) = 2796(1 + 1.5) = 6990 A.

(b) {10 pts] Lets say that the above profile has a full rest—frame velocity spread of 100 km/s. What is

the observed wavelength range over which you expect to see the absorption. [HINT: careful, remember

this system is at z =1.5.] -

The Dopper formula is Av/c = AMX. This, of course, applies in the rest-frame. Thus, Adrest =

(100/c) - 2796 = 0.932 A. To obtain the observer’s frame wavelength spread, we multiple by 1 + 2. Thus,

Adops = 2.5-0.932 = 2.33 A. This is the expected wavelenth range. If we assume that the velocity sp'nead
" is symmetric, the observed wavelength range is 6990 £ 0.5A )3, giving 6988.83-6991.16 A.

(c} [10 pts] Now reverse the question. You see an absorption line centered at wavelength 5000 A and

you identify the line as Mg II A2796. The observed wavelength spread across the profile is 5 A. What is

the rest—frame velocity spread of the Mg II absorbing gas.

The observed wavelength is obtained from )\abs/)\resg = (1 + z), which yields z = 0. 78 The regt~ -

frame wavelength spread is Adress = Adopa /{1 +2) = 5/1.78 = 2.8 A. Thus, the rest—fram velocity is

Av =c- (2.8/2796) = 300 km/s.

. [29 pts] The AVyg par'ameter.

(2) [4 pts] In words, what is the AV parameter.

Per the words of the authors, AVgo is “the velocity range over which 90% of the apparent optzcal depth
is seen.” We define the apparent optical depth below for part (c).




(b) [56 pts] Let’s say that you measured AVgg for a redshifted Mg II A2796 profile in some data you
obtained. From the information given in this paper alone, could you estimate [M/H] for the absorbing.
gas? If not, which reference(s) mentioned in the paper would you need to examine in order to find the
information required to make the estimate?

NGO. In this paper, the authors do not supply the conversion formule. Assuming that the Mg II absorbers
are DLAs, you would need to examine the paper by Ledouz et al. (2006). Assuming that the Mg IT
absorbers are sub-DLAs, you would need to consult the paper by Dessauges-Zavadsky et al. (2009).

(c) |20 pts] Ok, backing up one step. Let’s say that you have a Mg II A2796 profile in some data you
obtained and you want to measure AVgy. To your chagrin, this paper, nor any of the papers in the
literature anywhere provide an equation or describe the method on how to compute AVyy. Thus, you
need to determine how to make the calculation on your own (this scenario is common in research). Derive
an expression for AVgg in terms of the cut off velocities v, and v_ so that you can therefore make the
calculation.

[HINTS: Lets say that the word “absorption” translates to the quantity known as the flux decrement,
1 — f{v)/fe(v), where f(v) is the observed flux at velocity v, and fe(v) is the continuum (unabsorbed)
flux at velocity v. You do not need to know the form of F(v); you are not being asked to evaluate your
relationship. Also, examine Figure 5, where the vertical dashed lines illustrate the locations of v, = +40
and v_ = —40 km/s. There is more than one way to write this expression. Partial credit will be given
for correct mathematical ideas and written explanations.)

You must determine the velocities v_ and vy such that when you add up the absorption strength betuween
these velocities, you obtain 90% of the total absorption strength. What’s more, the definition is clearly
designed so that 5% of the absorption is cut off outside v.. and 5% outside of vy. Assuming “absorption”
translates to 1 — f(v)/fc(v), one possible definition is:

[ o= senena [ - sy nwia
—co0 _ =0.05 o0 =0.95 (1)
J e [ n-seyswia

Using expressions of this type, you would then need to. “hunt and peck” to find the v_ and vy that solve
these equations. Note that there is one unknown per equation. It is not uncommon to have the unknown
variable be a limit of integration. In practice, one would root solve these equations. Given these integrals,
it is probably not too difficult to imagine shightly different definitions that yield the values of v.. and vy .
Once these velocities are determined, we have Augy = Uy —U—. In reality, the definition is based upon
the “apparent optical depth”, which is determined from wnverting f(v)/ fo(v) = exp(—7,). The apparent
optical depth is then 7, = In[f.(v)/f(v)]. For the proper calculation, the quantity 1— f{v}/ f.(v) is reploced
with In{f.(v)/ f(v)] in the above integrals. Can you see the problem if the profile becomes saturated, so
that f(v) = 0. How would *you* handle this in practice?
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