. Cume #340 (with solutions)
(56 Questions; 85 Points Possible; 70 Points Guaranteed Pass)
Given January 24, 2009

Partial Coverage and Time Variability of Narrow—Line Intrinsic QSO Absorption Systems
Barlow, T. A., Hamman, F., & Sargent, W. L. W., in “Mass Ejection From AGN,”
eds. R. Weymann, I. Shlosman, & N. Arav (arXiv:astro-ph/9705048v1)

Please start each question (by number) on a new sheet of paper, write on only one side of the paper, and
staple them together in order of question number when finished.

1. [13 pts] Intrinsic and Intervening Absorption

(a) [5 pts] Define what an intervening absorber is. List as many properties as you can of what charac-
terizes an intervening QSO absorption line system.

Intervening absorbers are absorbing gas structures that are not physically associated with the QSO en-
vironment nor with the quasar host galazy nor with the cluster in which the quasar host golazy resides.
In the abstract, the authors stote that intervening absorbers are “gas clouds unrelated to the QSO phe-
nomenon”. Intervening absorbers are at cosmological distances from the background QSO and their
redshift separations from the QSO are due to the Hubble flow. Intervening absorbers are often associated
with intergalactic gas such as Ly forest clouds, intracluster or intragroup gas, or galactic disk or halo
gas. The velocity widths range between 20 to 400 km s~ and the absorption profiles exhibit velocity
splittings due to the kinematics of multiple distinct clouds at different line of sight velocities. Also, the
gas is usually photoionized by the ultraviolet background radiation.

{b) [5 pts] Define what an intrinsic absorber is. List as many properties as you can of what characterizes
an intrinsic SO absorption line system.

Intrinsic absorbers are physically associated with the QSO central engine (cute talk for the region that
generates the quasar continuum). In the abstract, the authors state that intrinsic absorbers are “gas
clouds within the QSO environment”. Physically, intrinsic absorbers are winds, ejecta, or infalling
material local to the QSO. Intrinsic absorbers are influenced by the QSO radiation field, and partake
in the dynamical interaction of the QSO with its environment. The velocity spreads of the absorption
profiles are often larger than those of intervening absorbers, > 600 km s~1, and the profiles exhibit the
choracteristic shapes of winds or smooth gas flows, as opposed to discrete clouds. In the first paragraph
of § 2 of the paper, the authors outline nine (9) properties that distinguish an absorber as an intrinsic
absorber. It was not necessary to write down all these properties. One important property is that the
redshift of the absorption is very close to the redshift of the QS0. The velocity relative to the QSO is
usually within some 50,000 km s, and in extreme cases, the velocity widths of the absorption lines can
be 5000 km s~1. Some properties that are important are (1) time variability, (2) saturated profiles, (3)
partial covering, (4) very high metallicity, and (5) high electron densities.

(c¢) [3 pts] Describe the third type of system, that does not strictly follow the definition of either an
intervening absorber nor an intrinsic absorber?

Somewhere between the intervening absorbers and the intrinsic absorbers are those that physically reside
in the QSO host galaxy or the galaxy cluster hosting the QSO. Some researchers call these “associated”
absorbers. Associated absorbers are not winds, ejecta, or infalling to the QSOs themselves. The redshift
of these absorbers are close to the redshift of the QSO. The properties of these absorbers are similar to
the intervening absorbers, except that the probability of intercepting them is higher than for intercepting
the intervening absorbers.



2. [7 pts] Given the emission redshift and absorption redshift of the Q0449-13 system discussed in the
beginning of § 3 and illustrated in Figure 1 of the paper, show by means of calculation that the outflow
velocity is the stated 3000 km s~71.

Since the velocity difference (or outflow velocity) is non relativistic, the quick and dirty answer is

Ay __ Zabs — Zem
c 1+ zom

where zuns 15 the absorber redshift and zew is the emission redshift of the QS0. We have

3.063 — 3.004

A”:C[ 1+ 3.004

] = —0.0le = —3000 km s,

This result can be obtained several ways. The first is that v = cz for non relativistic velocities. We can
apply this equation because we are computing the velocily difference in the inertial frame of the QS0. So
Av = czahs — CZem. But this is the co—moving velocity difference. To obtain the proper velocity, divide by
14 zem. The expression for Av can also be obtained directly from the non-relativistic Doppler formula,
Avfe=AN/X If Ao = A1 + 2) is the observed waovelength and A, is the rest—frame wavelength for an
emitter or ahsorber ot redshift z, then

éﬁ _ & — /\r(l + Zabs) - )\'r(l + Zem) - (1 + zabs) - (1 + Zem) __ Zabs ™ %em

e A Ar(l A Zepm) 1+ zZem 14 2em

Relazing Av < ¢, we are required to employ the well known relativistic Doppler formula to obtain the

peculior velocity,
| 4 Zabs = Zem _ 14 Av/ec
14 2em Y 1—Av/c

where the faetor 1 + zem ensures that Av is the inertial frame peculior velocity {omilting this factor
provides the co-moving peculior velocity). Inverting, we have

2
Zabs — Zem
14 Z8bs— ‘em |
Av [ + 142z ] !
o Zpbs — Zem : ’
14 ZBbs fem 1
[ + 142 ] +

which reduces to the non—relativistic case for (Zabs — Zem)/(1 + Zem) <€ 1.

Many of you applied the relativistic Doppler formula to compute the recessional velocity of the absorber
and then of the QS0O, and then took the difference to obtain the velocity separation. This is wrong
on multiple levels. First, the relativistic Doppler formula does NOT yield the cosmological recessional
velocity. Second, the formula was applied to obtain the recessional velocity in the observer frame; but it
cen only be applied this way if the receding object is in the inertial frame of the observer, which is NOT
true for cosmological objects.

[¥** This is important stuff. I have attached a couple of pages from my book to this solution set that you
are welcome to read if you want to better understand and learn how to compute velocities and velocity
differences in the cosmological setting. ***] '




3. [25 pts] The authors state that time variability is probably the most conclusive indicator that an
absorber is intrinsic.

(a) [6 pts] Identify and qualitatively describe the two physical processes mentioned by the authors that
potentially yield variability in the absorption lines of an intrinsic absorber?

(1) The luminosity and/or spectral energy distribution of the ionizing source (QSO) can vary, which
results in a changed fluz at the absorbing cloud. This changed fluz can result in a change in the ionization
conditions of the absorbing cloud. (2) If the absorbing cloud is moving at a substantial velocity relative
to source, this can potentially be observed. Since the shape of the absorption line maps the velocity
distribution of the optical depth, this distribution can change over time. Both of these physical processes
can potentiolly be observed even when partial covering is present. In fact, #2 may be enhanced by a
change in the partial covering with time.

(b} [19 pts| The authors mention that it is possible to distinguish between these two physical mechanisms
“by observing two different lines of different ionization levels”. Let’s call the two physical mechanisms,
Mechl and Mech2 (so as to not have me give away what they are in the question). Now, say you needed
to perform this experiment. Describe very precisely how you would undertake the experiment, including
{i} on what basis would you choose which lines to study? (ii) what quantity or quantities would you
measure for each of these lines in order to quantitatively compare them? (iii) how would you expect this
quantity to vary if the variability were due to Mechl? or (iv) how would you expect this quantity to
vary if the variability were due to Mech2? [Basically, I am asking you to design and very clearly describe
the experiment and clearly state your hypothesis]

If the hypothesis is that the source luminosity is variable, then one should evamine changes in the
tonizalion conditions. A sure experiment is to measure the ratio of the optical depth profiles, 7, =
In{I5/I3} of transitions from different ionization stages of the same chemical species. For example, one
could select 8111 (16 V) and Si1v (45 eV) doublets, or CI1 (24 eV) transitions and the C1v doublet (64
eV). If one selects transitions for which the ionization potentials are two close, then there is some lost
leverage on the amount that the ratio will change. If one selects transitions for which the sonizntion
potentials are very different, for example O1 (13 eV) and Ovi (138 eV), then there is some uncertointy
that the two ionic species arise in the same parcel of absorbing gas. At any rate, measurements are
required at two epochs. One measures the statistical significance (yes, requires knowing the uncertainties

precisely) at which the optical depth profile have changed from one epoch to the next. Equivalent width
ratios will also do. '

If the hypothesis is that the absorbing cloud has moved relative to the source from one epoch to the
next, then the observable signature of a change in the velocity distribution of the optical depth should
equally be present in multiple profiles. In this case, ambiguity is reduced if the different chemical species
are examined for which the ionization levels of the transitions are nearly similar. By using similar
tonization levels, one minimizes the contribution of a possible change in the source luminosity as well.
For example, C11 and Si11, or C1v, S1v and Nv (97 eV) might be useful choices. If the covering fraction
changes in a statistically consistent way between transitions of similar fonization levels, this is also a
supportive result,

Of course, both processes can be occurring simultaneously, and so it would be ideal to Tun both experiments
simultaneously. The magjor challenge for the experiment is spectral coverage. For limited telescope time,
perhaps a one shot chance for each epoch, it may not be possible to obtain the requisite signal-to—noise
ratio for multiple spectral coverage settings. Since the experiment is a difference measurement, the signal-
to-noise ratio needs to be at least a factor of /2 better for each epoch than would be for single epoch
measurements. Also, the atmospheric cutoff or instrument plus telescope throughput may limit the useful
spectral region,



4. [15 pts] The Partial Covering Fraction ,
(a) {2 pts] Define and/or describe what partial covering is.

Partial covering refers to the geometric configuration when the 'obéewed cross sectional area of the source
is not fully occulted by the absorbing material.

(b) (2 pts] Define the covering fraction, Cy.

If the occultation of the source by the absorbing material is partial, then only a fraction of the source is
occulted. The covering fraction is the ratio of the solid angle of the source that is occulted to the total
solid engle of the source. Eguivalently, this is the fractional area of the source that is occulted by the
absorbing material.

(c) [4 pts] In Figure 1 of the paper, what characteristic feature of the Nv AA1238,1242 doublet is
suggestive that this absorber shows the signs of partial covering. Be specific.

The Nv AA1238, 1242 doublet absorption is well resolved. Both members of the doublet are saturated,
which is directly apparent from the fact that the line cores are flat over a broad velocity range and that the
flux level of the saturated core of the Nv X1238 profile is equal to that of the Nv A1242 profile. In other
words, the equivalent widths of the two doublet members are equal, which is the tall tale sign of optically
thick gas and saturated doublet profiles. Thus, the gas is optically thick to NV absorption. It is clear
that the source is only partiolly occulted because the saturated line cores do not have zero transmitted fluz
(saturated absorption lines that are resolved have zero fluz in their cores).

{d) |3 pts] Briefly, qualitatively describe why this characteristic feature arises in these absorption lines—
think of the light paths from the source to the observer.

The absorption arises from the gas the occults the QSO. The optical depth of this gas cloud is quite
high, much greater than unity. Thus, there is effectively zero transmission of the light from the occulted
portion of the QS0. Light emitted from the projected area of the QSO that is not occulted has 100%
transmission. The combine effect is that saturated absorption profiles are observed from absorbing gas
cloud, but the line cores are “filled in” by the unocculted light. In the line core, the ratio fr/f? is called
the residual fluz.

(e) {4 pts] Describe how this characteristic feature of the .absorption profile would change if Oy were
somewhat smaller than it is.

If the covering fraction is made smaller, then the projected area of the QSO occulted by the absorbing gas
is reduced. The net result is that a greater proportion of the light from the source has 100% transmission
to the observer. Thus, as the covering fraction is reduced, the amount of light available to “fill in” the
line cores increases. Or, as the covering fraction is decreased, the residual flux level in the line cores
increases (they are shallower).




5. [25 pts] Consider the geometric configuration in the included diagram (Figure 1). Show that the
observed flux, fy, is given by

H=FR1+Crlexp{—n}—1)],
where 7, is the optical depth of the absorbing cloud, and where

fAH‘Tf'R IA and Cf=Sin29,\.
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Figure 1: — A schematic of partial covering for a highly idealized case in which an absorbing cloud is centered directly in front

of the disk of the source. The observed solid angle of the absorbing cloud (darker shading) is smaller than the observed solid
angle of the source. In this scenario, the intervening cloud occults a area on the source (lightly shaded) defined by a cone with
angle ). Solid lines from the isotropically emitting scurce are specific intensity beams that are uncbstructed by the intervening
absorber, whereas dotted lines are beams for which some level of absorption has occurred.

Start with the flux integral over the source {QSO)

fgzv/fb\cos@dﬂ,
b Jb

where I is the observed specific intensity, and d is the solid angle element on the surface of the source
of radius R, as seen from the observer at a distance D. Use the fact that Iy = Iexp{—7,} for the
light beams transmitted through the absorber, where I? is the specific intensity (isotropic) emitted at
the surface of the source. Show each of the followmg steps.

(a) [4 pts] What is the expression for dQ27

The problem stated that dSQ is the solid angle element on the surface of the source of radius R, as seen from
the observer at o distance D. The general definition of the solid angle element is dQ = dA/D?, where dA
is the line of sight projected area element as seen from the observer a distance D from the area element.
On the surface of a spherical object of radius R,, the area element is dA = R?sinf df d¢. As viewed from
the observer, we then have d} = (R2/D?)sinfdf dp. A common mistake hef‘e, was that most students

provided the solid angle as seen from the center of the source, which is dQ = (R2/R%)sinfdfdp =
sin 6 d dep, which was incorrect.

(b) [5 pts]| What are the limits of integration over the source?

From the question, which states, “start with the fluz integral over the source”, and from part (b) of
the question, which asks for the limits of integration “over the source”, you hopefully deduced that the
Jluz is determined by integrating over the geometry of the source. That is, the origin of the coordinate
system is the source center, not the position of the observer. The cos@ factor in the flur integral is
the dot product of the angle between the radial direction of the light beams emitted at the surface of the
source and the direction to the observer, i.e., T - 8§, where the observer is in the § direction (the line of
sight). The azimuthal angle, ¢, rotates the area element about the § azis, and varies from 0 < ¢ < 2.
The polar angle, § can in principle range vary from O — m, where § = 0 is in the direction toward the



observer and 8 = 7 is directly awey from the observer and the angle incresses counterclockwise in the
diagram. However, only beams originating from the hemisphere on the observer side of the source reach
. the observer, so the polar angle limits of integration range from 0 < 8 < w/2. (For 0 < 0 < =, the fluz
integral vanishes!)

(c) [6 pts] Fully write out the integrals to obtain fj.

As an example for illustration purposes of this solution set, we first set up the problem for no occulting
cloud and then for a fully occulting cloud. The observed fluz from an unocculted, unresolved spherical
source of radius R, at a distance D from the observer is
R2 2 /2 R2
0 _ 0 : e s 70

f,\ﬁD—;/O A IAcosﬁsm@d@dqb-—'frDQI;\.
The observed flur from a fully occulted unresolved spherical source of radius Ry at o distance D from the
observer is

R2 2 pmj2 ' R?
fa= D—;]O A I exp{—7\} cosdsinfdfdp = w—b%fg exp{—ny} = flexp{—7:},
where Ty 15 the optz'cdl depth of the occulting cloud. The problem here is to treat a partially occulted
source as configured in Figure 1. The occulted region of the source is the surface of rotation (about @)
over the range of polar angle 0 < 8 < 8,5, and the unocculted region is the surface of rotation over the
range of polar angle ) < 8 < /2. Writing fi = f{° + f¥"°°°, we have
R2 27 9,\ R2
ee = D—‘; f f IS exp{—72} cosfsin 0 df dgp = sin8, TFD—';I&) exp{—7a},

o Jo

RE 2 pw/f2 0 3 RE 0
UNOCE ___ i = i
fumocs . ﬁfo [ Reososingdsdg = (L~ siw*rln T3 13

{d) [5 pts] Integrate (Hint: try the substitution p = cos#8).

We wish to show the evaluation of the above integrals (this section is for purpose of illustration of this
solution set, it was not required thot this substition be shown, since there are multiple ways to solve the
integral). Clearly the integral over the azimuthal angle is simply 2=, the factor for the surface of rotation.
For the polar angle, if we use p = cosf, then du = ~sin@df. The integrand simplifies to —udu. The
limits of integration transpose to (@ =0 —- p=1}, (f=7/2 - p=0), and (0 = 0\ — p = cosfy). We

thus have
cos 0,

COS@A 1 1 1
I3 —f pdpy = —Euz = 5(1 — cos?8)) = 5 sin?0;,
1

1

[E 1 2 1 g 1 2
f}\;.nﬂccoc_/ #dﬂz__# = — 04 QA:—[l—sin 9)\]
c 2 2 2

0s 0

cos @y,
Thus, we have the factors sin?8y and [1 — sin®8)] for ¢ and fymece, respectively.
(e} [5 ptsj Algebraic manipulation to obtain the final result.
Writing fi = f3° + f3™°°, we have '
2 2

R . R
fo =sin®8, wD—‘;IR exp{-n}+[1— 31n29A]7rD—32I2,
Setting Cy = sin*@) and invoking fY = n(R2/D?)I}, yields

Fr=Csflexp{-n} +[1 - Cl 13,

where the first term on the right hand side is the flux that is transmitted through (survives not being
absorbed in) the occulting cloud, and the second term is the unocculted flux that passes directly to the
observer. Simple steps yield the desired form quoted above.
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Figure 2.15: The redshift dependence of the cross section of a beam, ¢3(z) for sources with
cross section o5 at redshift z,, given by Eq. 2.157. Six source redshifts are illustrated, z; = 1,
2, 3, 4, 5, and 6. Solid curves represent even z, and dotted curves represent odd numbered
zs. — {a) the low—density cosmology (0.1,0). — (b} the Einstein-de Sitter (1.0,0) cosmology.
— () the A cosmology (0.3,0.7).
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2.8 Velocity and Redshift

Having defined the connections between redshift and time and also various dis-
tances, it is of interest to consider the concept of velocity, which is derived from
the ratio of proper distance over travel time. The proper distance is
a(t D

( )Dc = - ’

ao 1+=
where the co-moving distance is given by Eq. 2.113. Velocity is the time deriva-
tive of the proper distance,

l:

(2.158)

di a(t) a(t) .

=== =D, 4+ —LD. 2.159
v dt ap + ag ( 5 )

Writing v = wree + Vpec, We have the definitions of the cosmological velocity of

recession (due to Hubble flow) and the so—called peculiar velocity,

2 (t

)

@Dc. (2.160)

UVrec = Upec =

The deduced (not observed) velocity of recession is dependent upon the
expansion velocity at the epoch of the observation, 4(¢), where the observer is
not necessarily in the inertial frame of the object, as will discussed in § 2.8.3.
The peculiar velocity of an object, on the other hand, measures an objects
velocity difference with respect to the Hubble flow. It can also be applied to
determine the velocity difference between two cosmological objects assumed to
be undergoing identical Hubble flow.

2.8.1 Peculiar Velocities

The peculiar velocity is defined in the inertial frame of the object. Thus, the
observer must apply a transform (rigorously or assumed) to place a cosmolog-
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ical object in its inertial frame. As such, peculiar velocities obey the rules of g}&wﬁm’
“special relativity. As will be discussed below, measurement of the redshift/ct”’ vgﬁ'@sﬂ’
a cosmological object directly yields the co-moving peculiar velocity, D.. To

obtain the inertial-frame peculiar velocity, vpe. (or what is commonly called the

rest—frame peculiar velocity), D, is multiplied by the ratio a(t)/ag. No object

can have a peculiar velocity exceeding light speed.

2.8.1.1 Photons

The peculiar velocity of a photon is always the speed of light, ¢. Photon veloc-
ities can be derived from the definition of vpe. and the fact that photons travel
on geodesics, ds = 0. Rewriting D, = dD,/dt, and applying the chain rule,
photons have

a(t)dD. _ a(t)dD.dx da

Ypee = Ty Tt ap dx dadd O (2161)

which is obtained by substitution of Eqgs. 2.51, 2.54, and 2.52 (rearranged),

respectively,
@_ﬁ _ Dy d_x oo Vi @ Mca(t)E(t) (2.162)
dx V% da  a(t) E()’ dt  Dx '

into Eq.2.161. Application of the geodesic, i.e., ds = 0, is applied through the
co—moving coordinate, dx/da, since this relationship in particular is derived for
photons only.

2.8.1.2 Cosmological Objects

The peculiar velocity of an object is defined as its velocity relative to the local
cosmological velocity of recession, i.e., relative to the Hubble flow. Peculiar
velocities are induced by mechanical and dynamical interactions. As observers,
we can measure only the radial {line of sight) component of the peculiar velocity
via the observed redshift of the source object, 2z, which is almost always obtained
by a spectroscopic measurement of a redshifted absorption or emission line at
wavelength ), for which the rest—frame wavelength is known to be M.

Consider an inertial reference frame at cosmological redshift z, in which a
source object is observed to have redshift z;. The line of sight component of the
peculiar velocity induces a small observed redshift offset, Az = z; — z, relative to
the local cosmological redshift. From the measured Az, and assuming vpe. < ¢,
the peculiar velocity is

. cAz
D,=cAz or vpec=1+z

. (2.163)

where vpec = [a(t)/00]De = De/(1 + z) follows from Eq. 2.160. The expression
for vpec can also be obtained directly from the non-relativistic Doppler formula,

© Chris Churchill {cwc@nmsu.edu) Use by permission only; Draft Version ~ January 12, 2008
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Avfe = AX/A If Ay = A(1 + 2z;) is the observed wavelength and ), is the
rest—frame wavelength for an emitter of absorber at redshift z, then
Upee _ Av  AXN M(l4z)—A(1+2) (14z)—(1+2)

c ¢ A Ar(l + 2) a (1+2) , (2164)

where the observed wavelength can be expressed in terms of the redshift offset,
Ao = Ar(14 25) = Ar(1 + 2 + Az), yielding
Upse _ DA (1424 Az) —(1+2) Az

s - 20 ) =1 (2.165)

Relaxing vpec < ¢, we are required to employ the well known relativistic Doppler
formula to obtain the peculiar velocity,

/1+Dc/c Az 1+ vpec/e
# lﬁDc/C ' 142 l_ﬂpec/C ( )

where the factor 1 + z ensures that Upec 15 the inertial frame peculiar veloc-
ity (omitting the normalization provides the co—moving peculiar velocity D).
Inverting, we have

A 2
1+ Z] ~1
142 :
Vpec = € IVEL , (2.167)
z
[”'i“"r] 1

which reduces to Eq. 2.163 for Az/(1+2) <« 1.

2.8.2 Observed and Inertial-Frame Velocity Separations

The peculiar velocity, vpec = [a(t)/ao] D¢, can also be applied to obtain the line
of sight velocity separation between two cosmological objects. However, it must
be assumed that the two objects reside in the same inertial frame (share the
same time coordinate). The term D, is interpreted as the co—moving peculiar
velocity. As we shall see, when a redshift offset, Az, is measured between two
cosmological objects, this is a direct measurement of ADQ; thus, the co-moving
velocity separation is actually the line of sight velocity separation in the observer
frame (a trivial statement). To convert to the object “rest frame”, one must
correct the observer frame velocity separation by the expansion factor of the
local frame, a(t)/ag = (1 + z)™1

Consider two cosmological objects along the same line of sight such that
object 1 has observed redshift z; and object 2 has observed redshift z;. If
21 # z2, the two objects have a non—zero velocity relative to one another.
Assuming the redshift offset is due to peculiar velocities, in the case that ™ Zo,
the inertial frame velocity separation between the objects along the line of sight

— e

is
3 cAz
AD.=chAz or \/_\v =113 (2.168)
-
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Figure 2.16: ~- The rest-frame velocity separation, Av, between two cosmological objects

at redshift z with redshift offsets of Az = 0.00001, 0.0001, 0.001, 0.01, 0.1, and 1.0. The solid
curves are given by Eq. 2.170, the full relativistic formula, and the dotted curves are given by
Eq. 2.168, for non-relativistic velocities. Note that the non-relativistic treatment is a good
approximation for Az < 0.1. Thus, the rule of thumb {Eq. 2.169), which shows how Awv scales
with Az anchored at Az = 0.0001 yielding Av = 30/(1 + 2) [km sec™1], can be applied for a
large range of Az.

where Az = 21 — 2, and Z = (21 + 22)/2. Eq. 2.168 follows from the same
principles applied to obtain Eq. 2.163. A good rule of thumb is Az = 0.0001
yields AD, = 30 [km sec™!] for the line of sight velocity separation in the
observer frame. The inertial frame line of sight velocity separation is computed
by dividing by 1 + Z,

W

? . Ay Az 30 km sec™!. . (2.169)

T 0.0001 1+z

Here, the speed of light Fias been rounded to 3.0 x 10° [km sec™!]. For example,
for Az = 0.002 at Z = 1, the inertial frame velocity separation is approximately
Av =20 (30/2) = 300 [km sec™],

For a redshift offset of Az = 0.1, Eqs. 2.168 and 2.169 overpredict Av by
5%. The relativistic expression for inertial frame velocity separation of object
1 relative to object 2 is

(1+2)% — (14 25)?
(14 21)% + (1 + 22)2’

* A’Ulz =cC (2.170)

as derived directly from Eq. 2.167 for Az = 21 — 29 and z = 25. If 2; < 23, then
Awpy is negative, which is to be interpreted such that the object 1 is moving
toward the observer relative to object 2. The derivation of Eq. 2.170 for the
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velocity separation of object 2 relative to object 1 yields a simple switching of
subscripts on the redshifts, which yields Avg; = —Awis. It is straight forward
to show that Eq. 2.170 reduces to Eqs. 2.168 and 2.169 in the limit z; =~ zo.

Eqgs. 2.170 (solid curves) and 2.168 (dotted curves) are illustrated in Fig-
ure 2.16 for various redshift offsets as a function of redshift. Note that the
curves obey Eq. 2.169 for a large range of Az; it is not until Az = 0.1 that the
relativistic treatment becomes necessary.

2.8.3 Velocities of Recession

Applying the relativistic formula (Eq. 2.170) for large redshift objects, as ob-
servers at z = 0, we would naively assign an apparent recession velocity of

c(1+z)2—1
(1+2)32+1

Ureg = {incorrect) (2.171)
to a cosmological object at redshift z. Wrong; don’t ever do this. It should
remain appreciated that the cosmological velocity of recession is not an inertial
frame measurement and thus does not obey the rules of special relativity. To ap-
ply Eq. 2.171 as & means of determining a velocity of recession to a cosmological
object is flat out incorrect.

Recession velocities are not interpreted as a Doppler shift. Yet, a conse-"]

quence of the expanding universe paradigm is that redshift is directly related to
recessional velocity (Harrison, 1993). There has been great confusion over the
interpretation of this velocity because of the notion that no objects can recede
at faster than light speed. Actually, it is an intellectual misconception that the
velocities of objects carried by the Hubble flow cannot exceed the speed of light
(see Davis & Lineweaver, 2004). In the expanding universe formalism, there is
no global reference frame. It is general relativity and not special relativity that

is employed for computing cosmological dynamics. oud

In general relativity, motions outside the observer’s inertial reference frame
can be properly treated and can be fully consistent with faster than light speed
motion., From Eq. 2.160, we have :

att)

e 2.1
- (2.172)

rec —

where, in general, t = ¢, is the cosmological time of the observation (for a
present epoch observer, t, = ty). Rearranging a(t,)/ao gives
ilte) _ alto) alte) _ H(zo) _ HoBl(z) %
g a(te) ap 1+ 2, 1+2, '

(2.173)

where z, is the redshift of the observer, and where E(z,) is given by Eq. 2.81.
Eq. 2.173 can be interpreted as a “proper expansion rate” of the universe for
an observer at redshift z, (as will be further discussed below). The co-moving
distance appearing in Eq. 2.172 is the co-moving radial separation, D.(2o, 25),
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2.8. VELOCITY AND REDSHIFT 53

between the observer and the source (see § 2.7.2). From Eq. 2.117, and noting
that ¢ = HoDy, the velocity of recession is then

cE(z,) [ dz  cE(z,) Do(zo,2s)

bt = T e o BGY T Tz Da (2:174)
where z,, is the reduced redshift (Eq.2.116),
14+ 2,
Lo 20s = T (2.175)

for an observed source redshift, z,.

2.8.3.1 Present Epoch Observer

For present epoch observers, z, = 0, so that the factor E(z,}/(1 + 2,), is
unity. The co-moving radial separation reduces to the total co-moving dis-
tance {Eq. 2.113). Thus, Eq. 2.174 simplifies to

% dz D,
Vrec(0, 2} =¢Cc | —— =c—. 2.176
©.9=c [ 55=5" (2176)

The recessional velocity of cosmological objects for a present epoch observer is
simply a multiple of the the speed of light, where that multiple is the number
of Hubble distances to the object. For D./Dy < 1, trec(0, 2) is some fraction of
light speed. For D./Dy > 1, vrec(0, z) is greater than the speed of light. When
the co—moving distance is the Hubble distance, 1..{0,2) = c.

In Figure 2.17, the recession velocity of cosmological objects is shown as a
function of redshift for present epoch observers, i.e., zo, = 0. The low—density
(dotted curve), Einstein—de Sitter {dashed), and A cosmologies (solid) are il-
lustrated, as are the special relativity velocity law (Eq. 2.171) and the linear
velocity law, v = ez.

For z < 0.1, the various recession velocities are consistent. For the “737"
cosmology, the recession velocity exceeds the speed of light at z ~ 1.46. It is
important to recognize that recessional velocity is not an observed quantity;
redshift is the observed quantity. Recessional velocity is a deduced quantity
\, that has an interpretation only through the cosmological paradigm.

2.8.3.2 Observer at Arbitrary Redshift

An additional predictive power of Eq. 2.174 is that the recessional velocity for
observers at different cosmic times, i.e., redshifts of observation, z,, can be de-
duced (thus, Eq. 2.174 can be employed to compute the recessional velocity of
a higher redshift object from the perspective of a lower redshift object). Ef-
fectively, the recessional velocity is the number of radial co-moving separations
per Hubble distance, D(z,, 25)/ Dy, multiplied by the factor, ¢ E{z,)/(1 + 2,),
which is evaluated at the redshift of observation. This factor accounts for the
fact that observers at different epochs measure different cosmological expansion
rates.
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Figure 2.17: — The velocity of recession, vrec (0, 2), of objects carried by the Hubble flow as
a function of redshift for a present epoch observer. Three cosmologies are shown, denoted by
(£m, 24); (i) the low—density (0.1,0), dotted; (i} Einstein—de Sitter (1.0,0), dashed; and the
A cosmology (0.3,0.7), solid. The special relativity case {Eq. 2.171) and the linear relation,
¥ = ¢z, are shown as thick dash—dot curves. For the A cosmology, the recession velocity of
objects exceeds the speed of light at z =~ 1.46 (Figure adapted from Davis & Lineweaver, 2004)

In Figure 2.18a, the velocity of recession of cosmological sources is shown
for observers at redshifts between 0 < z, < 5.6 in steps of 0.2 for source red-
shifts over the range z, < 2z, < 50. Each curve is for a different observer
redshift, which can be identified by vrec{2s,2s)/c = 0 at 2z = 2z,. These veloc-
ity curves can be compared to the co-moving radial separations illustrated in
Figure 2.8b. Effectively, the recession velocities are those curves multiplied by
factor ¢ E(2,)/(1 + 25)- As alluded to above, the expression HoE(z,)/(1 + z,),
given by Eq. 2.173, can be interpreted as the proper cosmological expansion rate
for an observer at redshift z,. Thus, the ratio E(z,)/(1 + 2,) can be interpreted
as the “normalized proper expansion rate”, i.e., normalized to the expansion
rate at the present epoch.

The normalized proper expansion rate for an observer at z, is plotted in the
inset of Figure 2.18a over the range 0 < z < 5. The rate has a minimum given
by Eq. 2.86 (a result that can be obtained via standard calculus) at z = 0.7456
and returns to unity at z = 2.4380.7 For large z, the rate develops an asymptotic
behavior of O, (1 4 2)1/2,

The overall behavior from high to low redshift is that the proper expansion
rate for observers decreases with decreasing redshift (deceleration) until z ~

"These values correspond to the current best cosmological parameters listed in Table 2.1.
The curve plotted in Figure 2.18¢ (inset) is for the 737 cosmology parameters, which has a
minimum at z = 0.6711 and a recover to unity at z = 2.0888. For the remainder of the
discussion, we assume the current best values.
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