#!/bin/sh
fluxes
RTH 11/01/07
#
AWK Math example, using one of Jon's early HW assignments
Some AWK variants (GAWK, NAWK, etc.) have different functions, so RTFM to see
Note that AWK log is really ln, so use identity that log_10(x) = ln(x)/ln(10)
Remember that $1 is the first column, $2 the second, and so on.
Also note the syntax of AWK in general:
1. You don't have to declare variables or types, it does its best to pick
2. awk 'BEGIN {Do before reading} {Do while reading} END {Duh}' IN > OUT
2a. ** If you don't print anything, there won't be any output :) **
3. AWK is best for relatively simple, one liner-ish programs.
3a. Interesting to note that limitations in both SED and AWK led to
the creation of Perl, which is like a script-variant of C.

awk '{print $1,(-2.5)*(log($2)/log(10))-21.1}' vegaobs.dat > vega_stmag.dat

awk '{f_nu=$2*$1^2*(1e-10)*(1/3e8)
 print $1,(-2.5)*(log(f_nu)/log(10))-48.6 }' vegaobs.dat > vega_abnu.dat

This is just for me, I have a perl/PGPLOT wrapper that takes care of most
mundane plotting tasks. Use whatever your heart desires to plot the output
~/plotter/template vegaobs.dat -2nd vega_stmag.dat -3rd vega_abnu.dat -line -yrange 3,-1.5 -label "Wavelength (\AA), Magnitude, STMAG (Green) & ABNU (Blue)"