The Kinematics of Ionized Gas in Nearby, Edge-on Galaxies from Multi-Iong-slit Spectroscopy

> Catharine Wu Astronomy Department New Mexico State University 5 November 2014

Special thanks to:

Committee Members: Rene Walterbos Chris Churchill Jon Holtzman Dan Dugas

APO 3.5m Staff; Astrophysical Research Consortium

HALOGAS Team: George Heald Richard Rand Maria Patterson Peter Kamphuis Paolo Serra

Funding: Research Corporation for the Advancement of Science NSF grant AST-0908126

Outline:

- Extra-planar (EP) gas
- Lagging gas
- Sample galaxies
- Multi-long-slit spectroscopy
- Multi-long-slit modeling
- Individual targets and results
- Sample conclusions

Extra-planar (EP) gas

- Star-forming disk ↔ thick disk/CGM/IGM
- Multi-phase: X-ray, radio continuum, dust, HI, HII
- Milky Way: Reynolds Layer
- HII: Varied morphology Correlated with star formation

Galactic Fountain

and the second second

Field & Shapiro, 1976 Bregman, 1980

Sector Sector

http://sci.esa.int

Galactic Fountain

Fraternali, F., et al. 2013

Galactic Fountain \rightarrow Lagging Halo

- Fountain accepted as origin of EP gas
- Ballistic models fountain flows only Collins et al. (2002); Fraternali & Binney (2006, 2008) Result: Lag is too small

manufacture and the state of the

• Hydrodynamic simulations – cloud-halo interactions Marinacci et al. (2011); Kaufmann et al. (2006) Result: Lag is just right

 \rightarrow Accretion ... in large, MW-type galaxies

Galactic Fountain + Accretion

- Large, star-forming galaxies
- Lags of 15 20 km/s/kpc or larger

Galactic Fountain + Accretion

- Large, star-forming galaxies
- Lags of 15 20 km/s/kpc or larger
- This study:
 - large, quiescent galaxies?
 - small, starbursting galaxies?
 - small, quiescent galaxies?

Galactic Fountain + Accretion

- Large, star-forming galaxies
- Lags of 15 20 km/s/kpc or larger
- This study:
 - large, quiescent galaxies?
 - small, starbursting galaxies?
 - small, quiescent galaxies?
 - How common are lags?
 - What are typical magnitudes of lags?
 - Does lag correlate with mass or SFR?

Sample Selection

2MASS Large Galaxy Atlas:

- close to edge-on
- northern hemisphere
- R_{K20} > 2.2'
- v_{hel} < 1600 km/s

	inc (°)	v _{rot} (km/s)	L_{FIR}/D_{25}^{2} (10 ⁴⁰ erg/s/kpc ²)	Exp. time (hrs)
NGC 891	90	212.1	2.2	12.9
NGC 3044	85	153.1	3.3	6.4
NGC 3079	88	208.4	8.9	2.25
NGC 3628	87	211.7	2.0	6.0
NGC 4013	84	181.7	2.7	6.4
NGC 4517	87.4	139.8	0.5	4.3
NGC 4565	87.5	244.9	0.5	5.0
NGC 4631	85	138.4	1.8	0.8, 6.8, 3.0
NGC 4672	87	110.0	> 0.2	7.5
NGC 5229	90	55.8	> 0.1	5.0
NGC 5907	87	226.7	0.8	5.5
UGC 4278	90	78.9	0.2	7.2
UGC 7321	90	94.5	0.03	2.5

Size

SFR

Multi-long-slit Spectroscopic Observing

- 11 1.5" slits, spaced 22.5"
- narrowband filter (25A)
- 3.75' x 4' FOV

- 0.58 A/pix \rightarrow 65 km/s resolution
- DIS, ARC 3.5m telescope at APO

Multi-long-slit Spectroscopic Observing

Multi-long-slit Modeling

Kregel & van der Kruit, 2014

- scale height scale length (relative intensity)
- circular rotation lagging value (velocity)
- inclination
 - → model profile
- Telescope Optics
- Instrument dispersion

Multi-long-slit Modeling

- "inclination effects" thick or thin, 90° + lag thin disk, 86° + (no) lag medium thickness, 88° + (no) lag
- 1-2 components S/N scaling

Velocity (km/s)

Multi-long-slit Test Galaxies

- NGC 4559
- test observational setup, calibration

Multi-long-slit Test Galaxies

- NGC 4559
- test observational setup, calibration

• High SFR (2.2); v_{rot} 212 km/s

- Thick, extended EP gas (HI, HII)
- Previous studies: Ha lag: 15-18, 18.8 km/s/kpc Heald et al. (2006b), Kamphuis et al. (2007)

HI lag: 20, 15, 15 km/s/kpc Swaters et al. (1997), Oosterloo et al. (2007), Fraternali et al. (2005)

Data and model profiles \rightarrow

Lag: 15 - 20 km/s/kpc

- High SFR (1.8) • V_{rot} 138 km/s
- Extensive EP gas Interacting

West

NGC 4631 East

Previous HI, CO studies: Outflow feature?

Warped spiral arm

NGC 4631 Central

Accelerating halo?

Counter-rotating gas?

Extreme lag? v_{rot} ~ 140 km/s

NGC 4631 Central

Extreme lag; outflow event?

NGC 4631 Central

Outflow event?

Lag 6 – 9 km/s/kpc

NGC 4631 West

- Low SFR (0.5)
 v_{rot} 140 km/s
- EP studies?
- Inc 87.4°
- Thin disk (150 pc)
- Thick disk (1 kpc)
 Radially varying lag

- Low SFR (0.5) (but soft X-ray halo)
- No extended HI or HII
- HI shows a lag
- v_{rot} 245 km/s

2-component model:

- Thin flare
- Thick

radially decreasing lag

Both match HI models

- Lag?
- 85°
- High SFR (3.3)

NGC 3079

- Lag?
 88°
- Highly SFR (8.9)
- LINER/Seyfert
- May be interacting

Non-lagging EP Gas

NGC 5907

Low SFR (0.8) v_{rot} 227 km/s Isolated Extended stellar streams

Non-lagging EP Gas

NGC 3628

NGC 4013

NGC 5907

Models: Thin disk, 87°

No EP Gas

UGC 7321 SFR (0.03) • Thick HI disk v_{rot} 95 km/s • Isolated

NGC 5229 SFR (>0.1) • v_{rot} 56 km/s

UGC 4278 SFR (0.2) • v_{rot} 79 km/s

No EP Gas

UGC 7321

UGC 4278

UGC 4278

.

NGC 4762

EP gas:

- 4 galaxies with a lag (891, 4517, 4565, 4631)
- 2 'maybe' galaxies (3044, 3079)
- 3 with no lag (3628, 4013, 5907)

No EP gas:

- 3 with no EP gas (4278, 5229, 7321)
- 1 non-detection (4762)

- NGC 891, 4517, 4565: lags 15-20+ km/s/kpc galactic fountain + accretion
- NGC 4631: warped spiral arm (east) extreme lag/outflow (central) small lag (west) – galactic fountain alone

	v _{rot} (km/s)	L _{FIR} /D ₂₅ ² (10 ⁴⁰ erg/s/kpc ²)	Hα extent (kpc)	Lag (km/s/kpc)	Interacting?
NGC 3079	208.4	8.9	3.50	?	Maybe
NGC 3044	153.1	3.3	3.00	?	Ν
NGC 4013	181.7	2.7	2.00	0	N
NGC 891	212.1	2.2	4.25	15-20	Ν
NGC 3628	211.7	2.0	2.00	0	Y
NGC 4631	138.4	1.8	3.50	outflow; 6-9	Y
NGC 5907	226.7	0.8	2.00	0	N
NGC 4565	244.9	0.5	2.50	70 → 0	Ν
NGC 4517	139.8	0.5	2.50	20-60	Ν
UGC 4278	78.9	0.2	1.50	-	N
NGC 5229	55.8	> 0.2	0.35	-	N
UGC 7321	94.5	0.03	0.35	-	N

	v _{rot} (km/s)	L_{FIR}/D_{25}^{2} (10 ⁴⁰ erg/s/kpc ²)	Hα extent (kpc)	Lag (km/s/kpc)	Interacting?
NGC 4565	244.9	0.5	2.50	70 → 0	Ν
NGC 5907	226.7	0.8	2.00	0	N
NGC 891	212.1	2.2	4.25	15-20	Ν
NGC 3628	211.7	2.0	2.00	0	Y
NGC 3079	208.4	8.9	3.50	?	Maybe
NGC 4013	181.7	2.7	2.00	0	N
NGC 3044	153.1	3.3	3.00	?	N
NGC 4517	139.8	0.5	2.50	20-60	Ν
NGC 4631	138.4	1.8	3.50	outflow; 6-9	Y
UGC 7321	94.5	0.03	0.35	-	Ν
UGC 4278	78.9	0.2	1.50	-	Ν
NGC 5229	55.8	> 0.2	0.35	-	Ν

Hα extent vs. Rotation speed

$H\alpha$ extent vs. SFR

- Lag is not correlated with SFR or v_r
- EP gas appears correlated with SFR and v_{rot}
- Goes against galactic fountain scenario

- Lag is not correlated with SFR or v_{rot}
- EP gas appears correlated with SFR and v_{rot}
- Goes against galactic fountain scenario
- Mass distribution models + galactic fountain Jalocha et al. (2010)
 - large spheroidal mass component \rightarrow small lags
 - disk-dominated potential \rightarrow large lags
- EP gas, no lag:
 - Is 2 kpc not high enough to see a lag?
 - Bulge-dominated?
 - Kinematics of EP gas, constrain mass distribution

General Conclusions

 Modeling: inclination effects can mimic a lag 90° + lag (thick or thin disk) 88° + thin disk 86° + thinner disk

General Conclusions

 Modeling: inclination effects can mimic a lag 90° + lag (thick or thin disk) 88° + thin disk 86° + thinner disk

 Observations: multi-slit setup for kinematics of extended objects edge-on/inclined galaxies nebula detection instead of kinematics

General Conclusions

 Modeling: inclination effects can mimic a lag 90° + lag (thick or thin disk) 88° + thin disk 86° + thinner disk

- Observations: multi-slit setup for kinematics of extended objects edge-on/inclined galaxies nebula detection instead of kinematics
- A good acronym?

Acronyms...

- HALOGAS Hydrogen Accretion in LOcal GalaxieS PI: G. Heald
- CHANGES Complete H-Alpha imaging of Nearby Group EnvironmentS

PI: C. Haines

- THINGS The HI Nearby Galaxy Survey PI: F. Walter
- LITTLE THINGS Local Irregulars That Trace Luminosity Extremes THINGS D. Hunter
- GHASP Gassendi H-Alpha survey of SPirals B. Epinat

Acronyms...

- MUlti-SLit IMaging Study MUSLIMS
- APO MUlti-Slit Imaging of Nearby Galaxies AMUSING
- MUlti-Slit Hα Imaging MUSHI
- MUlti-Slit Technique Applied to Studies of Hα Emission MUSTASHE

Summary

- Developed observing method and data reduction pipeline for multi-slit spectroscopic setup
- Developed software to model galaxies specifically for the multi-slit setup
- Observed sample of galaxies to look for lagging gas
- Detected a lag in 4 of 13 galaxies; 3 have no lag;
 3 have no EP gas
- \bullet Found possible correlation between $H\alpha$ and SFR

Conclusions

	v _{rot} (km/s)	$\frac{L_{FIR}}{D_{25}}^{2}$ (10 ⁴⁰ erg/s/kpc ²)	Hα extent (kpc)	Lag (km/s/kpc)
NGC 891	212.1	2.2	4.25	15-20
NGC 3044	153.1	3.3	3.00	?
NGC 3079	208.4	8.9	3.50	?
NGC 3628	211.7	2.0	2.00	0
NGC 4013	181.7	2.7	2.00	0
NGC 4517	139.8	0.5	2.50	20-60
NGC 4565	244.9	0.5	2.50	70 → 0
NGC 4631	138.4	1.8	3.50	outflow; 6-9
NGC 5229	55.8	> 0.2	0.35	-
NGC 5907	226.7	0.8	2.00	0
UGC 4278	78.9	0.2	1.50	-
UGC 7321	94.5	0.03	0.35	-

ionized gas – source of ionization is OB stars; could be H gas everywhere...and we have flashlights that only show us that gas at certain points (ionized)