Calendar

Aug
30
Fri
Colloquium: Lisa Young (Host: Rene Walterbos)
Aug 30 @ 3:15 pm – 4:15 pm
Colloquium: Lisa Young (Host: Rene Walterbos) @ BX102

Cold Gas and the Evolution of Early-type Galaxies

Lisa Young, New Mexico Tech

A major theme of galaxy evolution is understanding how today’s Hubble sequence was
established — what makes some galaxies red spheroidals and others blue disks, and what
drives their relative numbers and their spatial distributions. One way of addressing these
questions is that galaxies themselves hold clues to their formation in their internal
structures. Recent observations of early-type galaxies in particular (ellipticals and
lenticulars) have shown that their seemingly placid, nearly featureless optical images can
be deceptive. Kinematic data show that the early-type galaxies have a wide variety of
internal kinematic structures that are the relics of dramatic merging and accretion
events. A surprising number of the early-type galaxies also contain cold atomic and
molecular gas, which is significant because their transitions to the red sequence must
involve removing most of their cold gas (the raw material for star formation). We can now
also read clues to the evolution of early-type galaxies in the kinematics and the
metallicity of their gas, and possibly also in the rare isotope abundance patterns in the
cold gas. Numerical simulations are beginning to work on reproducing these cold gas
properties, so that we can place the early-type galaxies into their broader context.

(incomplete video)

Sep
12
Thu
Colloquium Thesis Proposal: Rachel Marra
Sep 12 @ 1:30 pm – 2:30 pm
Colloquium Thesis Proposal: Rachel Marra @ Jett Hall 210

An Observer’s Examination of the Circumgalactic Medium using Cosmological Simulations

Rachel Marra, NMSU

A significant aspect to understanding galaxy evolution is having an understanding of the intricacies involving the inflow and outflow of baryons onto a galaxy. Gas needs to accrete onto the galaxy in order for star formation to occur, while stellar winds, supernovae, and radiation pressure result in the outflow of gas from the galaxy. The diffuse region around the galaxy that has gas from interstellar medium (ISM) inflows and intergalactic medium (IGM) outflows interacting is the circumgalactic medium (CGM). Studying the CGM will help us learn about the baryon cycle and give us a better understanding of galactic evolution.

The primary method to studying the CGM is through absorption, as the density is too low to detect emission. Studying these absorption features allows us to learn about the physical properties of the gas giving rise to the absorption. Other than through observations, cosmological simulations play a large role in how we learn about the CGM of galaxies. Using MOCKSPEC, the Quasar Absorption Line Analysis Pipeline, to create mock quasar sightlines through the VELA simulation suite of galaxies, we use the absorption features seen in the sightlines to study the CGM in the simulations. While there are many ions that are used to study the CGM, we focus on OVI.

We intend to study how effective our methods are for studying the CGM with both observations and simulations. The covering fraction of OVI for a sample of observed galaxies will be compared with the covering fraction that is found from a selection of LOS that probe simulated, Milky-Way type galaxies. This tells us if the simulations can reproduce the observations, and if they do not, we can gain insights as to why the simulations do not match observed data. We will also investigate if the metallicity calculated from an observed absorption feature reflects the actual metallicity of the probed gas by using mock sightlines through simulations. Additionally, we will do a comparison of different methodologies used to study the CGM in simulations, to determine if using mock quasar sightlines is a more realistic and accurate method to compare to observed data.

Feb
26
Wed
Colloquium Thesis Proposal: Sean Sellers
Feb 26 @ 3:30 pm – 4:30 pm
Colloquium Thesis Proposal: Sean Sellers @ Domenici Hall 006

A Multi-Wavelength Study of the Evolution of Solar Flares

Sean Sellers, NMSU