Calendar

Sep
6
Fri
Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)

 

Sep
13
Fri
Colloquium: Eric Nielsen (Host: Moire Prescott)
Sep 13 @ 3:15 pm – 4:15 pm
Colloquium: Eric Nielsen (Host: Moire Prescott) @ BX102

Charting the Outer Reaches of Exoplanetary Systems: Wide-Separation Giant Planet Demographics with Direct Imaging

Eric Nielsen, Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

Over the past decade, the combination of advances in adaptive optics, coronagraphy, and data processing has enabled the direct detection and characterization of giant exoplanets orbiting young, nearby stars. In addition to the wealth of information about exoplanetary atmospheres we obtain from spectroscopy of directly imaged planets, the demographics of these wide-separation planets allow us to directly test theories of planet formation, probing the outer planetary systems compared to transit and radial velocity techniques. In this talk I will present results from the Gemini Planet Imager Exoplanet Survey (GPIES), which surveyed 521 nearby stars for giant planet and brown dwarf companions orbiting beyond 5 AU, and is one of the largest, deepest direct imaging searches for exoplanets every conducted. The overall occurrence rate of substellar companions, and trends with companion mass, semi-major axis, and stellar mass are consistent with giant planets forming via core accretion, and point to different formation mechanisms for giant planets and brown dwarfs between 10 and 100 AU.

 

Nov
22
Fri
Colloquium: Rixin Li (Host: Wladimir Lyra)
Nov 22 @ 3:15 pm – 4:15 pm
Colloquium: Rixin Li (Host: Wladimir Lyra) @ BX102

Simulating Planetesimal Formation in the Kuiper Belt and Beyond

Rixin Li, University of Arizona

A critical step in planet formation is to build super-km-sized planetesimals in protoplanetary disks. The origin and demographics of planetesimals are crucial to understanding the Solar System, circumstellar disks, and exoplanets. I will overview the current status of planetesimal formation theory. Specifically, I will present our recent simulations of planetesimal formation by the streaming instability, a mechanism to aerodynamically concentrate pebbles in protoplanetary disks. I will then discuss the connections between our numerical models and recent astronomical observations and Solar System explorations. I will explain why all planetesimals likely formed as binaries.

Aug
21
Fri
All Department meeting
Aug 21 @ 3:00 pm – 4:00 pm
All Department meeting @ Online

Department “all-hands” meeting

Aug
28
Fri
No Colloquium
Aug 28 @ 3:00 pm – 4:00 pm
No Colloquium @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Sep
4
Fri
Colloquium:Inclusive Astronomy
Sep 4 @ 3:00 pm – 4:00 pm
Colloquium:Inclusive Astronomy @ BX102

NMSU Inclusive Astronomy

Inclusive Astronomy group, NMSU

Sep
11
Fri
Colloquium: Simon Casassus (Host: Wlad Lyra)
Sep 11 @ 3:00 pm – 4:00 pm
Colloquium: Simon Casassus (Host: Wlad Lyra) @ BX102

Protoplanetary disk rotation curves and the kinematic detection of protoplanets

Simon Casassus, Universidad de Chile

Direct detections of protoplanets still embedded in a gaseous protoplanetary disk have been remarkably elusive in their thermal-IR radiation. Yet most models for the structures observed in disks involve planet/disk interactions. The gas and dust density fields are thus appealing proxies to trace embedded bodies, but they are not sufficient to ascertain a planetary origin. New hopes for protoplanet detection come from the disk kinematics, which should also bear their dynamical imprint. The last couple of years have seen the first indirect detection of protoplanets, with the observation of small deviations from Keplerian rotation in molecular line channel maps, and their reproduction in hydrodynamical simulations. Can we use the gas kinematics directly to pin-point the location and measure the dynamical mass of giant planets? The theoretical velocity reversal along the wakes of a protoplanet should be observable as a Doppler-flip, provided that the background flow is adequately subtracted. This axially symmetric flow is a generalized rotation curve, including also the radial and vertical velocity components, which bear the imprint of accretion, winds, and of the theoretical meridional flows in the case of planet/disk interactions. I will present a technique to calculate disk rotation curves, with applications to ALMA long baseline data in HD100546 and in HD163296.

Sep
18
Fri
Colloquium: Nikole Nielsen (Host: Chris Churchill)
Sep 18 @ 3:00 pm – 4:00 pm
Colloquium: Nikole Nielsen (Host: Chris Churchill) @ online

The Circumgalactic Medium at Cosmic Noon with KCWI

Nikole Nielsen, Swinburne University of Technology

The star formation history of the universe reveals that galaxies most actively build their stellar mass at cosmic noon (z=1-3), roughly 10 billion years ago, with a decrease toward present-day. The resulting metal-enriched material ejected from these galaxies due to supernovae and stellar feedback is deposited into the circumgalactic medium (CGM), which is a massive reservoir of diffuse, multiphase gas out to radii of 200 kpc. The CGM is the interface between the intergalactic medium and the galaxy, through which accreting filaments of near-pristine gas must pass to contribute new star formation material to the galaxy and outflowing gas is later recycled. Simulating these baryon cycle flows is crucial for accurately modeling galaxy evolution. While the CGM is well-studied at z<1, little attention has been paid to the reservoir when star formation is most active due to the difficulty in identifying the host galaxies. The installation of the Keck Cosmic Web Imager (KCWI), an integral field spectrograph, on Keck II has opened a new window to quickly identify galaxies via their Lyman alpha emission at this redshift. I will introduce a new survey to build a catalog of absorber-galaxy pairs at z=2-3 with KCWI. With the combination of HST images, high-resolution quasar spectra, and the cutting-edge KCWI data, this survey aims to examine CGM kinematics and metallicities and relate them to the host galaxy star formation rates and orientations to reveal the baryon cycle at cosmic noon. https://nmsu.zoom.us/j/96153330256

Sep
25
Fri
Colloquium: Lauren Kahre (Host: Rene Walterbos)
Sep 25 @ 3:00 pm – 4:00 pm
Colloquium: Lauren Kahre (Host: Rene Walterbos) @ Online

Colloquium Title

Lauren Kahre, Affiliation

Abstract text

https://nmsu.zoom.us/j/96153330256

Oct
2
Fri
Colloquium: OPEN (Host: TBD)
Oct 2 @ 3:00 pm – 4:00 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text