Colloquium PhD Thesis Defense: Sten Hasselquist
Apr 6 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Sten Hasselquist @ BX102

Colloquium Title

Sten Hasselquist, NMSU


Colloquium: David Nataf (Host: Jason Jackiewicz)
Oct 5 @ 3:15 pm – 4:15 pm
Colloquium: David Nataf (Host: Jason Jackiewicz) @ BX102

Clues to Globular Cluster Formation

David Nataf, Johns Hopkins University

Globular clusters are now well-established to host “Second-generation” stars, which show anomalous abundances in some or all of He, C, N, O, Na, Al, Mg, etc.  The simplest explanations for these phenomena typically require the globular clusters to have been ~20x more massive at birth, and to have been enriched by processes which are not consistent with the theoretical predictions of massive star chemical synthesis models. The library of observations is now a vast one, yet there has been comparatively little progress in understanding how globular clusters could have formed and evolved. In this talk I discuss two new insights into the matter. First, I report on a meta-analysis of globular cluster abundances that combined APOGEE and literature data for 28 globular clusters, new trends with globular cluster mass are identified. I discuss the chemical properties of former globular cluster stars that are now part of the field population, and what can be learned.

Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)