Calendar

Mar
15
Thu
Colloquium Thesis Proposal: Drew Chojnowski
Mar 15 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Drew Chojnowski @ Domenici Hall 102

The Circumstellar Disks and Binary Companions of Be Stars

Drew Chojnowski, NMSU

Tremendous progress has been made over the past two decades toward understanding Be stars, but a number of key aspects of them remain enigmatic. The unsolved mysteries include identification of the mechanism responsible for disk formation, the reason this mechanism occasionally turns off or on unexpectedly, the source of viscosity in the circumstellar disks, and the cause of slowly precessing density perturbations in the disks of many or most Be stars. On a deeper level, the origin of Be stars’ near-critical rotation is unknown, with one possible explanation being spin-up due to interaction with a binary companion. A better understanding of these stars is needed, with a particular focus on high-mass binaries being warranted in the age of gravitational wave astronomy. In this dissertation, I will extend the knowledge and understanding of Be stars through a series of three projects. First, I will present and describe the largest ever homogeneous, spectroscopic sample of Be stars to date. I will then focus on investigation of a rare class of Be stars found in binary systems with hot, low mass companions. The second project will present detailed characterization and modeling of HD~55606, a newly discovered member of this class. Finally, I will discuss the results of spectroscopic monitoring of seven newly discovered systems and establish or place limits on the orbital parameters of the binary components.

Apr
13
Fri
Colloquium Thesis Proposal: Emma Dahl
Apr 13 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Emma Dahl @ BX102

Colloquium Title

Emma Dahl, NMSU

Abstract text

May
9
Wed
Colloquium Thesis Proposal: Caitlin Doughty
May 9 @ 2:15 pm – 3:15 pm
Colloquium Thesis Proposal: Caitlin Doughty @ Science Hall 107

Metal Absorption in the Circumgalactic Medium During the Epoch of Reionization

Caitlin Doughty, NMSU

The characteristics of metal absorption arising from the circumgalactic medium of galaxies have been demonstrated to be related to conditions in the galaxy which sourced them, as well as to the ambient ultraviolet background. I propose a three- pronged thesis in order to better understand and utilize these relationships. First, I will explore whether the spectral energy distributions of binary stars, incorporated into a custom version of GADGET-3, can explain the discrepancy between observed and simulated absorber statistics. Second, I will study the relationship between neu- tral oxygen absorbers and the neutral hydrogen fraction in simulated quasar sight- lines and relate the results to observations of neutral oxygen at z ≥ 4.0. Third, I will study the relationships between the emissive properties of galaxies, stemming from their nebular gas, and the metal absorbers which they source. Taken as a whole, this thesis will improve the ability of cosmological simulations to reproduce realistic metal absorption, probe the local progress and topology of reionization, and under- stand what emissive galaxy traits we expect at z > 5 based on observations of metal absorbers.

Jan
20
Sun
Lunar Eclipse – Public Outreach Event
Jan 20 @ 7:45 pm – 10:30 pm
Lunar Eclipse - Public Outreach Event

The NMSU Astronomy Department will be holding a two-part public event for the January 20th total lunar eclipse!

Starting at 7:45 PM, Professor Kristian Finlator will give a talk on the eclipse in the Biology Annex (located here) from 7:45 PM to 8:15 PM, with a second provisional talk planned at 8:30 PM in case attendance is too high for everyone to fit into the room for the first talk.

From 8:30 pm to 10:30 PM the telescopes at Tombaugh Observatory (located here, a short walk/drive from the Biology Annex) will be opened and graduate students will be on hand to answer questions and run the telescopes. Feel free to come to one or both of these events, or to arrive to the telescopes at any time between 8:30 and 10:30. Please keep in mind, the eclipse begins around 8:30, but totality (or, when the moon turns red from fully entering Earth’s shadow) doesn’t begin until ~9:40 PM. The Society of Astronomy Students will also be on site with hot chocolate!

Parking is available at both locations. If there is a possibility of inclement weather, please call the Observatory Hotline (575-646-6278) to make sure that we will have the telescopes open (if there’s a chance of rain, we will not open the telescopes, and we will leave a message at this number saying so).

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Mar
5
Tue
Public Talk: Janna Levin: Black Hole Blues
Mar 5 @ 7:30 pm – 8:45 pm
Mar
19
Tue
Colloquium: Jack Burns
Mar 19 @ 7:30 pm – 8:30 pm
Colloquium: Jack Burns @ Domenici Hall 109

Our Future in Space: The Moon and Beyond

Jack Burns, University of Colorado Boulder

Why do we explore space? How do we explore
space? Where should we explore? What are
the tools for space exploration? These questions will be addressed in this talk focused on
the future of human and robotic exploration of
the solar system and beyond. Since the end of
the Apollo program, the justification for the human space program has proven elusive. We will
borrow a page from the computer and new
commercial space companies to argue for an
inspirational approach to the next phase of
exploration beyond Earth orbit. The “how” is
addressed with NASA’s new Orion and Space
Launch Systems along with new launch systems being developed by private companies
such as SpaceX and Blue Origin. We will argue
that both the Moon and Mars can be explored
through a combination of governmental programs, international partnerships, and public-
private partnerships. The tools for exploration
include telerobotics where astronauts aboard
NASA’s Lunar Gateway in orbit of the Moon
will operate rovers and deploy telescopes on
the lunar surface in a new synergy between
robots and humans.