Calendar

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.

Apr
6
Fri
Colloquium PhD Thesis Defense: Sten Hasselquist
Apr 6 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Sten Hasselquist @ BX102

Colloquium Title

Sten Hasselquist, NMSU

Abstract

Aug
21
Fri
No Colloquium
Aug 21 @ 3:15 pm – 4:15 pm
No Colloquium @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Aug
28
Fri
Colloquium: OPEN (Host: TBD)
Aug 28 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Sep
4
Fri
Colloquium: OPEN (Host: TBD)
Sep 4 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Sep
11
Fri
Colloquium: OPEN (Host: TBD)
Sep 11 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Sep
18
Fri
Colloquium: OPEN (Host: TBD)
Sep 18 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Sep
25
Fri
Colloquium: Lauren Kahre (Host: Rene Walterbos)
Sep 25 @ 3:15 pm – 4:15 pm
Colloquium: Lauren Kahre (Host: Rene Walterbos) @ BX102

Colloquium Title

Lauren Kahre, Affiliation

Abstract text

Oct
2
Fri
Colloquium: OPEN (Host: TBD)
Oct 2 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Oct
9
Fri
Colloquium: OPEN (Host: TBD)
Oct 9 @ 3:15 pm – 4:15 pm
Colloquium: OPEN (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text