Calendar

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.

Aug
27
Mon
Planetary Group meeting
Aug 27 @ 2:00 pm – 3:00 pm
Sep
10
Mon
Planetary Group meeting
Sep 10 @ 2:00 pm – 3:00 pm
Sep
12
Wed
Colloquium PhD Thesis Defense: Alexander Thelen (Host: Nancy Chanover)
Sep 12 @ 3:00 pm – 4:00 pm
Colloquium PhD Thesis Defense: Alexander Thelen (Host: Nancy Chanover) @ Domenici Hall Room 102

The Chemical Composition and Dynamics of Titan’s Atmosphere as Revealed by ALMA

Alexander Thelen, NMSU

Over the last century, remarkable advances in our understanding of Titan’s atmosphere have been accomplished by a campaign of ground- and space-based observations revealing a wealth of complex, organic species in the moon’s upper atmosphere. Many of Titan’s atmospheric constituents produced through the photochemistry and ionospheric interactions of N2 and CH4 exhibit significant variations with latitude and time, particularly towards the poles and within the winter circumpolar vortex. The measurement of spatial and temporal variations in Titan’s atmosphere enables us to elucidate connections between its dynamics, photochemistry, and the influence of seasonal changes. At the end of the Cassini mission in 2017, we can employ the Atacama Large Millimeter/submillimeter Array (ALMA) for future observations of Titan’s atmosphere. Here we detail the analysis of numerous short integration (~3 minute) ALMA observations from 2012 to 2015 to investigate Titan’s stratospheric composition, temporal variations, and search for new molecular species. Using the Non-linear optimal Estimator for MultivariatE spectral analySIS (NEMESIS) radiative transfer code, we retrieved vertical profiles of temperature and abundance in Titan’s lower stratosphere through mesosphere (~50–550 km) from three spatially independent regions. We modeled CO emission lines to obtain temperature measurements, and retrieved abundance profiles for HCN, HC3N, C3H4, and CH3CN. The combination of integrated flux maps and vertical atmospheric profiles from spatially resolved observations allowed us to study the circulation of Titan’s middle atmosphere during northern spring. We observed increased temperatures in Titan’s stratopause at high northern latitudes and a persistent northern enrichment of HCN, C3H4, and CH3CN during this epoch; however, increased abundances of all molecules in the southern mesosphere, particularly HCN, and spatial maps of HC3N also show evidence for subsidence at the south pole. We validated these measurements through direct comparisons with contemporaneous Cassini data, previous ground-based observations, and photochemical model results. While no new trace species were detected, ALMA has proven to be a highly capable asset to enhance the data from the final few years of the Cassini mission, and for the continued study of Titan’s atmospheric dynamics, composition, and chemistry into Titan’s northern summer.

Sep
24
Mon
Planetary Group meeting
Sep 24 @ 2:00 pm – 3:00 pm
Oct
8
Mon
Planetary Group meeting
Oct 8 @ 2:00 pm – 3:00 pm
Oct
29
Mon
Planetary Group meeting
Oct 29 @ 2:00 pm – 3:00 pm
Nov
12
Mon
Planetary Group meeting
Nov 12 @ 2:00 pm – 3:00 pm
Nov
26
Mon
Planetary Group meeting
Nov 26 @ 2:00 pm – 3:00 pm
Apr
3
Fri
Colloquium Thesis Defense: Jeremy Emmett
Apr 3 @ 3:15 pm – 4:15 pm
Colloquium Thesis Defense: Jeremy Emmett @ BX102

Dependence upon Obliquity of the Formation of Martian PLD Vertical Structure

Jeremy Emmett, NMSU

Mars’ polar layered deposits (PLD) are comprised of layers of varying dust-to-water ice volume mixing ratios (VMR) that are thought to record astronomically-forced climatic variation over Mars’ recent orbital history. Retracing the formation history of these layers by quantifying the sensitivity of polar rates of deposition to astronomical forcing may be critical for the interpretation of this record. Using a Mars global climate model (GCM), we investigate the sensitivity of annual polar water ice and dust surface deposition to a variety of obliquity and surface water ice source configurations at zero eccentricity that may provide a reasonable characterization of the evolution of the PLD during recent low-eccentricity epochs. The GCM employs a fully interactive dust lifting/transport scheme and accounts for dust-and-water physics coupling effects on the transport and deposition of water ice and dust. GCM results suggest that snowfall in the form of water ice-nucleated dust particles generally provides the greatest contribution to both water ice and dust deposition on the polar surfaces, suggesting that dust-and-water physics coupling is an important consideration in the modelling of PLD layer formation processes. Under a range of tested obliquities (15° – 35°), predicted net annual accumulation rates range from -1 mm/yr to +14 mm/yr for water ice and from 0.005 – 0.57 mm/yr for dust. When these GCM-derived accumulation rates are ingested into an integration model that simulates polar accumulation of water ice and dust over five consecutive obliquity cycles (~700 thousand years) during a low eccentricity epoch, select integration model simulations predict combined north polar water and dust accumulation rates that correspond to the observationally-inferred average growth rate of the north PLD (0.5 mm/yr) over its ~5 million year formation history. These integration model simulation results are characterized by net water transfer from the south to the north polar region. In the north, a ~230 m-thick deposit is accumulated over ~700 thousand years. Three types of layers are produced per obliquity cycle: a ~30 m-thick dust-rich (20 – 30% dust volume mixing ratio) layer that forms at high obliquity when both water ice and dust deposition rates are large, a ~0.5 m-thick dust lag deposit (pure dust) that forms at low obliquity when net removal of water ice occurs, and two ~10 m-thick dust-poor (~3%) layers that separate the dust rich layers and form when obliquity is increasing or decreasing. The ~30 m-thick dust-rich layer is reminiscent of a ~30 m scale length feature derived from analysis of visible imagery of north PLD vertical structure. This work demonstrates the capability of obliquity variations to produce PLD stratigraphy reminiscent of observed PLD structure when water and dust deposition are interactively coupled.