Colloquium: Sanchayeeta Borthakur (Host: Kristian Finlator)
Oct 19 @ 3:15 pm – 4:15 pm
Colloquium:  Sanchayeeta Borthakur (Host: Kristian Finlator) @ BX102

Understanding How Galaxies Reionized the Universe

 Sanchayeeta Borthakur, Arizona State University

Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. While young stars can produce large amounts of ionizing photons, the mechanism behind the escape of Lyman continuum photons (wavelength < 912 A) from star-forming regions has eluded us. To identify such galaxies and to understand the process of the escape of Lyman continuum, we present an indirect technique known as the residual flux technique. Using this technique, we identified (and later confirmed) the first low-redshift galaxy that has an escape fraction of ionizing flux of 21%. This leaky galaxy provides us with valuable insights into the physics of starburst-driven feedback. In addition, since direct detection of ionizing flux is impossible at the epoch of reionization, the residual flux technique presents a highly valuable tool for future studies to be conducted with the upcoming large telescopes such as the JWST.

Special Colloquium: Stella Kafka (Host: Karen Kinemuchi)
Feb 20 @ 3:15 pm – 4:15 pm
Special Colloquium: Stella Kafka (Host: Karen Kinemuchi) @ Domenici Hall

The AAVSO Program: A Resource for Variable Star Research

Stella Kafka, AAVSO

The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 25,000 variable objects, and using it for research projects. As such, the AAVSO’s main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.


Dr. Stella Kafka, is the Director of the AAVSO (American Association of Variable Star Observers). Before her tenure at the AAVSO, Dr Kafka held positions at CTIO, Spitzer Science center/Caltech, Carnegie Institution of Washington/DTM and AIP Publishing. The AAVSO is an international non-profit organization of variable star observers whose mission is to enable anyone, anywhere, to participate in scientific discovery through variable star astronomy.

Colloquium: Shun Karato (Host: Jason Jackiewicz)
Oct 25 @ 3:15 pm – 4:15 pm
Colloquium: Shun Karato (Host: Jason Jackiewicz) @ BX102

Solving the Puzzles of the Moon

Shun Karato, Yale University

After 50 years from the first landing of men on the Moon, about 380 kg of samples were collected by the Apollo mission. Chemical analyses of these samples together with a theory of planetary formation led to a “giant impact” paradigm (in mid 1970s). In this paradigm, the Moon was formed in the later stage of Earth formation (not the very late stage, though), when the proto-Earth was hit by an impactor with a modest size (~ Mars size) at an oblique angle. Such an impact is a natural consequence of planetary formation from a proto-planetary nebula. This collision may have kicked out mantle materials from the proto-Earth to form the Moon. This model explains mostly rocky composition of the Moon and the large angular momentum of the Earth-Moon system. High temperatures caused by an impact likely removed much of the volatile components such as water.

However, two recent geochemical observations cast doubt about the validity of such a paradigm. They include (i) not-so-dry Moon suggested from the analysis of basaltic inclusions in olivine, and (ii) the high degree of similarities in many isotopes. The first observation is obviously counter-intuitive, but the second one is also hard to reconcile with the standard model of a giant impact, because many models show that a giant impact produces the Moon mostly from the impactor. In this presentation, I will show how one can solve these puzzles by a combination of physics/chemistry of materials with some basic physics of a giant impact.

Colloquium: Elise Boera (Host: Kristian Finlator)
Dec 6 @ 3:15 pm – 4:15 pm
Colloquium: Elise Boera (Host: Kristian Finlator) @ BX102

Revealing reionization with the thermal history of the intergalactic medium

Elisa Boera, SISSA Trieste

During hydrogen reionization the UV radiation from the first luminous sources injected vast amount of energy into the intergalactic medium, photo-heating the gas to tens of thousands of degree Kelvin. This increase in temperature has left measurable `imprints’ in the thermal history of the cosmic gas: a peak in the temperature evolution at the mean density and a smoothing out of the gas in the physical space by the increased gas pressure following reionization (i.e. Jeans smoothing effect). The structures of the HI Lyman-alpha forest at high redshift are sensitive to both these effects and therefore represent a powerful tool to understand when and how reionization happened. I will present the most recent constraints on the thermal history of the intergalactic medium obtained using the Lyman-alpha forest flux power spectrum at z>5. I will show how these results can be used to obtain information on the timing and the sources of the reionization process and I will discuss their consistency with different possible reionization scenarios.