Calendar

Jan
24
Wed
Colloquium Thesis Proposal: Laurel Farris
Jan 24 @ 2:30 pm – 3:30 pm
Colloquium Thesis Proposal: Laurel Farris @ Science Hall, Room 110

Characterizing the oscillatory response of the chromosphere during solar flares

Laurel Farris; NMSU Astronomy Department

Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,

particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are

considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.

There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic

cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the

chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute

oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis

will be extended to multiple flares, and will include time before, during, and after the main event. To test

initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two

instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including

continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700

Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface

Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

Mar
15
Thu
Colloquium Thesis Proposal: Drew Chojnowski
Mar 15 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Drew Chojnowski @ Domenici Hall 102

The Circumstellar Disks and Binary Companions of Be Stars

Drew Chojnowski, NMSU

Tremendous progress has been made over the past two decades toward understanding Be stars, but a number of key aspects of them remain enigmatic. The unsolved mysteries include identification of the mechanism responsible for disk formation, the reason this mechanism occasionally turns off or on unexpectedly, the source of viscosity in the circumstellar disks, and the cause of slowly precessing density perturbations in the disks of many or most Be stars. On a deeper level, the origin of Be stars’ near-critical rotation is unknown, with one possible explanation being spin-up due to interaction with a binary companion. A better understanding of these stars is needed, with a particular focus on high-mass binaries being warranted in the age of gravitational wave astronomy. In this dissertation, I will extend the knowledge and understanding of Be stars through a series of three projects. First, I will present and describe the largest ever homogeneous, spectroscopic sample of Be stars to date. I will then focus on investigation of a rare class of Be stars found in binary systems with hot, low mass companions. The second project will present detailed characterization and modeling of HD~55606, a newly discovered member of this class. Finally, I will discuss the results of spectroscopic monitoring of seven newly discovered systems and establish or place limits on the orbital parameters of the binary components.

Apr
13
Fri
Colloquium Thesis Proposal: Emma Dahl
Apr 13 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Emma Dahl @ BX102

Colloquium Title

Emma Dahl, NMSU

Abstract text

May
9
Wed
Colloquium Thesis Proposal: Caitlin Doughty
May 9 @ 2:15 pm – 3:15 pm
Colloquium Thesis Proposal: Caitlin Doughty @ Science Hall 107

Metal Absorption in the Circumgalactic Medium During the Epoch of Reionization

Caitlin Doughty, NMSU

The characteristics of metal absorption arising from the circumgalactic medium of galaxies have been demonstrated to be related to conditions in the galaxy which sourced them, as well as to the ambient ultraviolet background. I propose a three- pronged thesis in order to better understand and utilize these relationships. First, I will explore whether the spectral energy distributions of binary stars, incorporated into a custom version of GADGET-3, can explain the discrepancy between observed and simulated absorber statistics. Second, I will study the relationship between neu- tral oxygen absorbers and the neutral hydrogen fraction in simulated quasar sight- lines and relate the results to observations of neutral oxygen at z ≥ 4.0. Third, I will study the relationships between the emissive properties of galaxies, stemming from their nebular gas, and the metal absorbers which they source. Taken as a whole, this thesis will improve the ability of cosmological simulations to reproduce realistic metal absorption, probe the local progress and topology of reionization, and under- stand what emissive galaxy traits we expect at z > 5 based on observations of metal absorbers.

Oct
19
Fri
Colloquium: Sanchayeeta Borthakur (Host: Kristian Finlator)
Oct 19 @ 3:15 pm – 4:15 pm
Colloquium:  Sanchayeeta Borthakur (Host: Kristian Finlator) @ BX102

Understanding How Galaxies Reionized the Universe

 Sanchayeeta Borthakur, Arizona State University

Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. While young stars can produce large amounts of ionizing photons, the mechanism behind the escape of Lyman continuum photons (wavelength < 912 A) from star-forming regions has eluded us. To identify such galaxies and to understand the process of the escape of Lyman continuum, we present an indirect technique known as the residual flux technique. Using this technique, we identified (and later confirmed) the first low-redshift galaxy that has an escape fraction of ionizing flux of 21%. This leaky galaxy provides us with valuable insights into the physics of starburst-driven feedback. In addition, since direct detection of ionizing flux is impossible at the epoch of reionization, the residual flux technique presents a highly valuable tool for future studies to be conducted with the upcoming large telescopes such as the JWST.

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Aug
23
Fri
Colloquium: Safe Zone Training (Host: Inclusive Astronomy Group)
Aug 23 @ 3:15 pm – 4:15 pm
Colloquium: Safe Zone Training (Host: Inclusive Astronomy Group) @ BX102

Safe Zone Training

Dr. Zooey Sophia Pook, NMSU

The SafeZone Training was established to educate and train students, faculty, and staff on how to provide safe and affirming support to members of the gay, lesbian, bisexual, transgender, and questioning community.

Aug
29
Thu
Planetary Group meeting
Aug 29 @ 4:00 pm – 5:00 pm
Aug
30
Fri
Colloquium: Lisa Young (Host: Rene Walterbos)
Aug 30 @ 3:15 pm – 4:15 pm
Colloquium: Lisa Young (Host: Rene Walterbos) @ BX102

Cold Gas and the Evolution of Early-type Galaxies

Lisa Young, New Mexico Tech

A major theme of galaxy evolution is understanding how today’s Hubble sequence was
established — what makes some galaxies red spheroidals and others blue disks, and what
drives their relative numbers and their spatial distributions. One way of addressing these
questions is that galaxies themselves hold clues to their formation in their internal
structures. Recent observations of early-type galaxies in particular (ellipticals and
lenticulars) have shown that their seemingly placid, nearly featureless optical images can
be deceptive. Kinematic data show that the early-type galaxies have a wide variety of
internal kinematic structures that are the relics of dramatic merging and accretion
events. A surprising number of the early-type galaxies also contain cold atomic and
molecular gas, which is significant because their transitions to the red sequence must
involve removing most of their cold gas (the raw material for star formation). We can now
also read clues to the evolution of early-type galaxies in the kinematics and the
metallicity of their gas, and possibly also in the rare isotope abundance patterns in the
cold gas. Numerical simulations are beginning to work on reproducing these cold gas
properties, so that we can place the early-type galaxies into their broader context.

(incomplete video)

Sep
6
Fri
Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)